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A broad symmetry criterion for nonparametric validity

of parametrically-based tests in randomized trials

Russell T. Shinohara 1, Constantine E. Frangakis 1,

and Constantine G. Lyketsos 2

February 20, 2011

Summary. Pilot phases of a randomized clinical trial often suggest that a parametric model

may be an accurate description of the trial’s longitudinal trajectories. However, parametric

models are often not used for fear that they may invalidate tests of null hypotheses of equality

between the experimental groups. Existing work has shown that when, for some types of data,

certain parametric models are used, the validity for testing the null is preserved even if the

parametric models are incorrect. Here, we provide a broader and easier to check characteriza-

tion of parametric models that can be used to (a) preserve nonparametric validity of testing

the null hypothesis, i.e., even when the models are incorrect, and (b) increase power compared

to the non- or semiparametric bounds when the models are close to correct. We demonstrate

our results in a clinical trial of depression in Alzheimer’s patients.
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1. Introduction

When analyzing data from randomized clinical trials, investigators often have information

about the relative appropriateness of certain parametric models from pilot phases or existing

literature. More specifically, suppose one is interested in assessing whether there is a difference

in average trajectories between a treatment arm and a control arm. Previous observations

that such trajectories are curvilinear over time would mean that a parametric model could

approximate well the actual underlying trajectories.

For example, in pharmaceutical treatment for patients with depression and Alzheimer’s dis-

ease studies (DIADS, Lyketsos et al 2003), depressive symptoms are studied longitudinally

after initiation of an antidepressive treatment regime or placebo. It has been observed that such

treatments generally result in an initial improvement in symptoms that reaches a plateau in a

matter of weeks (e.g., Mulsant et al, 2001). This curvilinear shape indicates that a parametric

model of quadratic curves for the mean outcome over time would be close to the actual trajec-

tories. This in turn would mean that a test between a treatment and a control arm based on

such parametric models might result in higher power than a nonparametric test.

Unfortunately, researchers tend to not use parametric models when analyzing data from

such trials. This is understandably a result of hesitations about the validity of parametric

tests when these models are misspecified. More specifically, the behavior of the type I error

of hypothesis tests for RCTs based on misspecified parametric models has not been as care-

fully studied until recently. For linear models, Robins (2004) has examined the behavior of

hypothesis testing based on misspecified models in this context. Rosenblum and van der Laan

(2009) have shed further light on this problem, by showing that there exist classes of possibly

misspecified models that still lead to valid tests. These results, however, have been specific to

testing for differences in means in particular subclasses of generalized linear models.

We derive a criterion that characterizes a broader class of parametric models through which
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non-parametrically robust hypothesis tests are obtainable. For example, we show in Section

4 that a large class of longitudinal parametric models can also be used to construct non-

parametrically valid tests. Furthermore, the criterion that we propose is easy to verify as it

has a geometrical symmetry interpretation. This is important because these parametric model-

based tests (a) preserve nonparametric validity of testing the null hypothesis, i.e., even when the

models are incorrect, and (b) increase power compared to the non- or semiparametric bounds

when the models are close to correct (see Section 6). In the next section, we present the setting

and notation of the remainder of the work. In Section 3 we give our main characterization

result. In Section 4 we show that the classes characterized in Rosenblum and van der Laan

(2009) are a subset of the class characterized by the more general symmetry criterion. In

Section 5 we give an application to the DIADS trial, and we conclude with a discussion.

2. Scientific setting and goal

We consider a randomized clinical trial (RCT) that compares an outcome Y between two

treatments, a = 0, 1. Specifically, for each of i = 1, ..., n patients, we measure the assigned

treatment A and the outcome Y . We also allow that pre-treatment covariate information X is

measured; X is not used for randomization but can be used for analysis. We wish to generalize

inference statements in a reference population from which we can assume that the n patients

are a representative random sample.

We denote by ptrue

a (y; x) the true conditional distribution pr(Y = y | A = a, X = x) for

randomized arms a = 0, 1. We wish to test the null hypothesis

H0 : ptrue

0 = ptrue

1 , (1)

as functions of y, x. More specifically, our goal is to test H0 with tests that are developed based
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on parametric models but are non-parametrically valid. This will be useful when pilot phases

of a clinical trial have suggested that a parametric model may be an accurate description of

the trial’s data, such as shapes of longitudinal trajectories.

Typically, we would represent a parametric model for the RCT with covariates by a col-

lection of distributions {P (Y = y | A = a, X = x, θ), for θ ∈ Θ} over a parameter space

Θ. Here, however, it will help give further intuition to our results if instead we use a dif-

ferent representation. Every parameter value θ ∈ Θ gives rise simultaneously to one dis-

tribution for the arm A = 0 and another for A = 1, namely, to the vector of distribu-

tions (P (Y = y | A = 0, X = x, θ), P (Y = y | A = 1, X = x, θ)), which we denote by

(p0(y; x; θ), p1(y; x; θ)). As the parameter θ varies over Θ, we therefore represent an arbitrary

parametric model by the set of vectors

S := { (p0(y; x; θ), p1(y; x; θ)), θ ∈ Θ}, (2)

or, more briefly, by {(p0, p1)} where we have omitted the indices for y, x, θ. In words, S is a

set whose members are the vectors of the distributions for the two arms of the RCT that are

generated by a parameter value. We allow that the model S may be incorrect in the sense that

S may not contain (ptrue

0 , ptrue

1 ).

3. A symmetry criterion for non-parametric validity of parametric tests

Rosenblum and van der Laan (2009) consider regression models under the setting described

above and show that a class of models with a particular form induce valid hypothesis tests,

independently of whether or not the specified model is correct. We claim that this property

holds for a more general class of models characterized by the following criterion:

Criterion 1: If (p0, p1) is a pair of distributions for treatment arms a = 0 and a = 1 in model
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S, then this criterion requires that the possibly incorrect null distributions

(p0, p0) and (p1, p1)

also be members in model S.

(Figure 1 here)

In terms of the parameter-based, but longer notation, Criterion 1 is described as follows.

For a given value of θ, which defines (p0(y; x; θ), p1(y; x; θ)) as an allowed pair of distributions

for the treatment arms a = 0 and a = 1 in the model S, there exists two parameter values

in S, say θ∗0(θ) and θ∗1(θ) for which: the null pair (p0(y; x; θ), p0(y; x; θ)) can be written as

(p0(y; x; θ∗0(θ)), p1(y; x; θ∗0(θ))) and so belongs in S with parameter value θ∗0(θ); and the null

pair (p1(y; x; θ), p1(y; x; θ)) can be written as (p0(y; x; θ∗1(θ)), p1(y; x; θ∗1(θ))) and so belongs in

S with parameter value θ∗1(θ).

More intuitively, Criterion 1 can be depicted visually using the Kullback-Leibler (KL) dis-

tance (the negative of the KL information, Kullback and Leibler, 1951) as in Figure 1. The

axes in this plot are the component-wise KL distance from the true null distribution in each

arm, which is convenient for emphasizing the symmetric nature of the criterion. In simpler

language, this criterion requires that if the model allows a distribution p for one of the arms,

then it must allow that the null hypothesis (p, p) may be true. This criterion is reasonable and

with the goal to compare between treatment arms, it would be difficult to justify a model that

does not allow for such a null hypothesis.

Under the regularity condition that π0E{| log p0(Yi; Xi; θ)| | Ai = 0}+π1E{| log p1(Yi; Xi; θ)| |

Ai = 1} <∞ for all θ, and where πa = P (Ai = a), we have the following result.

Result 1: If Criterion 1 is satisfied, we have that under the null hypothesis (1), a null

distribution (p∗, p∗) ∈ S maximizes the limit of the log-likelihood function.
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If, in addition, conditions A1-A6 of (White 1982) hold then we have that (p∗, p∗) is the

unique maximizer of limiting log-lkelihood and that the MLE of the contrast between p0 and p1

is asymptotically normal with mean 0. The result is shown in Appendix A. In what follows, we

assume the above regularity conditions.

The above result is important because, although the researcher does not control the cor-

rectness of the parametric model S, the researcher fully controls and can select S to satisfy

Criterion 1. The latter thus ensures that under the true null H0, any contrast (e.g., difference

in means, medians) between the maximum likelihood estimates, say (p̂0, p̂1), is asymptotically

also null. In small samples, the uncertainty of the contrast between the maximum likelihood

estimates, (p̂0, p̂1) should be estimated robustly, for example, using a bootstrap (see Section

5).

4. Relation with established literature

Result 1 of the last section generalizes those of Rosenblum and van der Laan (2009) by including

a wider class of models. Specifically, Rosenblum and van der Laan (2009) considered the null

hypothesis to be on the mean regressions in each arm,

H0 : µtrue

0 (x) = µtrue

1 (x), for all x (3)

where µtrue

a (x) = E(Y | X = x, A = a), and showed that tests based on the working model for Y

being a generalized linear model are robust to that model being incorrect. We can now see that

that result follows from geometric symmetry arguments similar to the ones for Criterion 1 and

Result 1. To see this, define µa(x, β) to be the model’s mean regression E(Y | X = x, A = a)

and define Smeans = {(µ0(·, β), µ1(·, β))} to be the set of mean functions allowed by the model

simultaneously for the two treatment arms. Consider now the following symmetry criterion

analogous to Criterion 1:
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Criterion 2: For a given value of β, which defines (µ0(·, β), µ1(·, β)) as an allowed pair of

means for the treatment arms a = 0 and a = 1 in the mean model Smeans, the criterion requires

that the null pairs

(µ0(·, β), µ0(·, β)) and (µ1(·, β), µ1(·, β)) (4)

also be members in Smeans.

Note that, for the above null pairs to be in the model Smeans, we mean that for any given β,

the left null pair of (4) can be rewritten as (µ0(·, β
∗

0), µ1(·, β
∗

0)) for some set of parameters,

β∗0(β); and the right null pair of (4) can be rewritten as (µ0(·, β
∗

1), µ1(·, β
∗

1)) for some set of

parameters, β∗1(β).

Result 2: If Criterion 2 is satisfied, we have that under the null hypothesis (3), the limit of

the log-likelihood function is maximized at a parameter β for which the pair (µ0(·, β), µ1(·, β))

has a null contrast, i.e., µ0(·, β) = µ1(·, β).

In the Web Appendix, we prove Result 2 and also show that the generalized linear models

described in Rosenblum and van der Laan (2009) satisfy Criterion 2. Criterion 2 is similar to

Criterion 1 in its statement and function. The difference is in the null hypotheses (3 and 1,

respectively). Criterion 2 requires symmetry in the mean structures allowed in the model but is

limited to generalized linear models, whereas Criterion 1 requires symmetry with respect to the

distribution, and is applicable to any parametric model. To show the generality of Criterion 1,

we continue with two examples that demonstrate the ease of checking its conditions.

For a first example, consider the simple normal linear regression with homoscedastic vari-

ance σ2 and mean E(Y | X = x, A = a) modeled as

µa(x, β) = β0 + βXx + βAa

7
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where β = (β0, βX , βA) are unrestricted. To evaluate Criterion 1, note that for a given value

of β the pairs of expectations for the two treatments, [µ0(x, β), µ1(x, β)], are

(β0 + βXx, β0 + βXx + βA)

Therefore it is seen easily that Criterion 1 holds because the null pair distributions with means

[µ0(x, β), µ0(x, β)] and [µ1(x, β), µ1(x, β)]

and with the same σ2 are also allowed models in S; the first pair is the null model that chooses

the coefficient of A to be 0 and the intercept to be β0; the latter pair can be re-written as

[(β0 +βA)+βXx, (β0 +βA)+βXx], which can also be derived in S by choosing the coefficient of

A to be 0 and absorbing βA in a new intercept, β0 +βA. This simple example is also a member

of the classes of robust models that Rosenblum and van der Laan (2009) described.

As a second example, it is useful to consider a study measuring the outcome Y longitu-

dinally, say at times t = 0, ...T , yielding values Yt respectively. For such outcome, consider a

multivariate normal model with means E(Yt | A = a) modeled as

µa(t,β) = β0,a + β1,at + β2,at
2, for a = 0, 1, (5)

and unknown variance covariance matrices var(Y |A = a) = Σa, where Σa are positive definite

and the parameters βa = (β0,a, β1,a, β2,a) for a = 0, 1 are unrestricted. Robustness properties

of such a longitudinal model are not considered by Rosenblum and van der Laan (2009), yet we

can now clearly see that this model too satisfies Criterion 1. Specifically, for any given value
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of βa=0 and βa=1, the pair of expectations for the two treatments, (µ0(t,β), µ1(t,β)) is

(βa=0, βa=1) · (1, t, t
2)′.

Therefore, the null pairs [µ0(t,β), µ0(t,β)] and [µ1(t,β), µ1(t,β)] are

(βa=0, βa=0) · (1, t, t
2)′ and (βa=1, βa=1) · (1, t, t

2)′.

Because the parameters βa=0, βa=1, Σa=0, Σa=1 are unrestricted, it follows that the last two

pairs are also in the model, so Criterion 1 is satisfied.

5. Example: the DIADS Trial

5.1 Plans for evaluation

Although major depression is a significant cause of morbidity in patients with Alzheimer’s

disease (AD), reports concerning the treatment of such a condition are conflicting. Forty-four

community-dwelling older adults who were diagnosed with probable AD and had experienced

a major depressive episode were randomized to sertraline A = 1 or placebo A = 0 in the

Depression in Alzheimer’s Disease Study (DIADS). Details on inclusion and exclusion criteria,

along with a more detailed description of the trial are available in Lyketsos et al. (2003).

In order to assess the effect of sertraline on depression, we consider the Cornell Scale for

Depression in Dementia (CSDD) (Alexopoulos et al. 1988), which was measured at baseline

(t = 0) and at t = 3, 6, 9, and 12 weeks after enrollment. The observed data are depicted

in Figure (2), left panel, where the thicker lines denote the observed means in each treatment

arm.

We consider testing the null hypothesis H0 of (1) against the alternative hypothesis that

9
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the distributions are different, using two models. For both models, we estimate a common

quantity, the difference in means between treatment and placebo at each time past baseline,

i.e., δt = E(Yt | A = 1)−E(Yt | A = 0). We assess the hypothesis that all δt = 0 which is true

under H0.

The first model is the nonparametric version of the MANCOVA in which we represent the

mean Cornell scores Y at time t as:

E(Yt | A = a) = µa(t)

and unknown variance covariance matrices var(Y |A = a) = Σa, where Σa are positive definite

and the parameters µa(t) for a = 0, 1 and all t are unrestricted. From this model, we test

for a treatment effect (after baseline) by (i) obtaining the nonparametric maximum likelihood

estimators, δ̂nonpar

t of δt for t > 0, which are simply the differences in average Cornell scores

between treatment and placebo at each time; and (ii) using the Wald test statistic W nonpar =

(δ̂nonpar)′S−1δ̂nonpar, where S is the estimated variance covariance matrix of δ̂nonpar. We obtained S

by bootstrap of the subjects under the null hypothesis.

Prior to DIADS, pilot studies had already suggested that the mean Cornell scores on ser-

traline show an initial benefit which then starts reaching a plateau (e.g., Mulsant et al, 2001).

This suggests that the simple model in (5) that allows for a quadratic trajectory in time for the

mean in each arm could represent parsimoniously the DIADS trajectories for the time frame

of 12 weeks. Moreover, because model (5) satisfies Criterion 1, we know that under the non-

parametric H0 of (1), the limits of the MLEs of βa=0 and βa=1 are the same fixed vector, say

β∗. Thus, under H0, the MLE of the difference, δ̂param := β̂a=1 − β̂a=0 has a probability limit

of 0 even if the model is misspecified. From this model, then, we test for a treatment effect on

the means (after baseline) by using the Wald test statistic W param = (δ̂param)′V −1δ̂param, where V
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is the estimated variance covariance matrix of δ̂param. Here too, V is obtained by bootstrap as

for the nonparametric test.

From the theoretical part of the paper, we know that because this parametrically-derived

test satisfies Criterion 1, it should be nonparametrically valid under the null (1). Also, it

will have better power than the nonparametric test to detect alternatives of diminishing drug

benefit that is well described by the trajectory (5). We evaluated these two properties in the

motivating study of DIADS.

5.2 Evaluation

First, in order to check that the tests are valid in data like those in DIADS, we estimated the

type I error of the above two tests in the distribution that results by simulating 1,000 placebo

and sertraline arms with sampling from the observed placebo arm only. This creates studies

of the same size as the one we have, and enforces the null hypothesis with distribution equal

to that of the observed placebo arm, which is not necessarily satisfying the parametric model

(5). In this realistic example, the empirical type I error was 5% for both W nonpar and W param.

Next, both models were fitted to the DIADS data and the fitted means are depicted in

thick dashed lines in Figure (2). Estimates of the variance covariance matrices were obtained

from 500 bootstrap samples. The significance levels (p-values) for a treatment effect were 0.10

for the nonparametrically derived test W nonpar and 0.04 for the robust parametrically derived

test W param.

(Figure 2 here)

Finally, we compared the two tests in terms of power to detect the empirical effects seen

in the study. Specifically, in order to assess power, a bootstrap within arms was used to

resample 1000 datasets with the same number of individuals in each of the treatment arms as
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the observed DIADS trial. For each of these resampled datasets, the MANCOVA and quadratic

models were fit and standard errors were estimated (via a further bootstrap of the resampled

individuals). The power was then calculated as the proportion of times each model rejected

the null hypothesis of no treatment effect. These simulations estimated the power to be 61%

for the nonparametrically derived test W nonpar and 69% for the robust parametrically derived

test W param.

The power of both tests converges to 1 with increasing effects and increasing sample size.

The effect size at the end of this study was relatively large (67%). Thus we expect that the

relative gains in power between the two methods should be larger in smaller effect sizes and

smaller with larger sample sizes. A more comprehensive study of power is of interest for further

work.

6. Discussion

We have demonstrated that for testing the null hypothesis of equivalence between treatment

arms, a wide class of parametric models provides testing with nonparametric validity. We

provided a simple symmetry characterization of such classes providing investigators an easy

way to harness the efficiency of such parametric models while maintaining robustness properties

traditionally considered reserved for nonparametric methods.

Although the Criterion 1 is quite general, there are more general conditions that ensure

model robustness. An example of such a condition is:

Criterion 3: Let (p0, p1) be a valid pair distribution in S. Then, if pi ∈ Si maximizes

the limit of the log-likelihood under the null distribution, then (pi, pi) ∈ S.
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The same proof as for Criteron 1 is valid assuming the more general Criterion 3. This

criterion is quite difficult to interpret, however, as it is dependent on the true distribution

of the data. As such, it is of little practical import but illustrates a general nature of the

robustness phenomenon.

Our results use the regularity conditions of White (1982). The conditions are similar in

spirit to those ensuring the usual consistency and normality properties of the MLE, but are

adapted to misspecified models with the assistance of the Kullback-Leibler distance. If these

conditions are not met, there can be indeed multiple maximizers of the limiting loglikelihood.

This can be addressed by defining the MLE (p̂0, p̂1) of interest in the study sample to be the

maximizer that is closest to a null of distribution in S in terms of the KL distance. Under the

true null, we expect that even under quite looser conditions this MLE (p̂0, p̂1) will converge to

a null distribution in S, although the more technical parts of this problem will be explored in

future work.

It is also important to note the relation of our work to semiparametric methods that use

covariates (e.g., Tsiatis et al. (2008)). Within a semiparametric model say Ssemipar, an efficient

semiparametric estimator has the variance of the least favorable parametric submodel allowed

in Ssemipar. Thus, if a researcher chooses to use a test based on a parametric model, say, Sparam,

that satisfies Criterion 1 in a way described in this paper, then the following hold: (a) the test

based on Sparam will be as valid as the test based on the semiparametric estimator; (b) if Sparam

is true or in a sufficiently close neighborhood to being true, and the least favorable submodel

of Ssemipar if different from Sparam, then the test based on Sparam will be more powerful than

the test based on Ssemipar; (c) if Sparam is far from being true, then the test based on Ssemipar

will be more powerful than the test based on Sparam. Thus, an important point to consider in

whether or not to use the robust tests of models satisfying Criterion 1 is whether or not those

models are expected to describe well features of the study, for example based on prior pilot

13
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studies.

Information from prior pilot studies or other scientific knowledge, although important, may

not be critical for parametric-based procedures to be valid nonparametrically. This is suggested

by work by Frangakis and Rubin (2001) and van der Laan et al. (2007), who examine how

observed data from the study at hand can be used for choosing between a parametric-based

versus a semi- or nonparametric-based estimator. To preserve nonparametric validity, these

types of choice procedures are superefficient and not regular in the theoretical statistical sense,

and require additional study.
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Appendix

Proof of Result 1:

For a pair (p0, p1) of distributions allowed in the parametric model S, the log likelihood of a

random sample of i = 1, ..., n individuals randomly assigned to either Ai = 0 or 1 is proportional

to
∑

i:Ai=0 log p0(Y ; Xi) +
∑

i:Ai=1 log p1(Yi; Xi), and therefore proportional to

n0

n

1

n0

∑

i:Ai=0

log p0(Yi; Xi) +
n1

n

1

n1

∑

i:Ai=1

log p1(Yi; Xi).

where na is the number of patients in treatment arm a = 0, 1 and n0 + n1 = n. Under the

regularity condition that π0E{| log p0(Yi; Xi; θ)| | Ai = 0}+ π1E{| log p1(Yi; Xi; θ)| | Ai = 1} <

∞ for all θ, and where πa = P (Ai = a), the probability limit of the above log likelihood is

π0E{log p0(Yi; Xi) | Ai = 0}+ π1E{log p1(Yi; Xi) | Ai = 1}, (6)

Assume now that the null hypothesis (1) that the true distributions ptrue

1 = ptrue

0 holds; then the

operations E(log(·) | Ai = 0) and E(log(·) | Ai = 1) in (6) are the same operation, say Q(·),

and so (6) is simplified as

π0Q(p0) + π1Q(p1), (7)

where we have omitted the arguments Yi, Xi with no loss of generality.

Let us now assume Criterion (1) from the main section, and suppose that a maximizer of (7)

is a non-null pair (p∗0, p
∗

1), i.e. with p∗0 6= p∗1. Then there are two cases: (a) either Q(p∗0) = Q(p∗1)

or (b) one of Q(p∗0), Q(p∗1) is larger. If (a) is true, then the null pair (p∗0, p
∗

0), which by Criterion

1 is also in the model, gives the same value of the functional (7) and so is also a maximizer

(the same is true for the null pair (p∗1, p
∗

1)). If (b) is true, then suppose Q(p∗0) is the larger of

Q(p∗1). Then, we can see that the null pair (p∗0, p
∗

0) will actually give a value π0Q(p∗0)+π1Q(p∗0)
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that is greater than the maximum, which would be a contradiction. So, (b) cannot be true,

and so from (a) we know that the limit of the log likelihood (7) is maximized at a null pair of

distributions in the model, say (p∗, p∗), which proves Result 1.

If, in addition, we have regularity conditions A1-A6 of (White 1982) then we have that

the null pair (p∗, p∗) is the unique maximizer of (7), and, with arguments analogous to White

(1982) we get that the MLE of the contrast between p0 and p1 is asymptotically normal with

mean 0.
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Proof of generalization of results from Rosenblum and van der Laan (2009):

First, let us consider the form of the mean function of generalized linear model with the

robustness property proposed by Rosenblum and van der Laan, that is,

µA(·, β) =
∑

j

β
(0)
j fj(A)gj(·) +

∑

k

β
(1)
k hk(·) (8)

where {fj, gj, hk} are such that for each j there exists a k such that gj(·) = hk(·), and β =

{β
(0)
j , β

(1)
k }. We will show that this property is a special case of (i.e., implies) symmetry

Criterion 2 .

Suppose (µ0(·, β), µ1(·, β)) be a valid pair in Smeans. Without loss of generality, let us consider

the model for the A = 1 arm:

µ1(·, β) =
∑

j

β
(0)
j fj(1)gj(·) +

∑

k

β
(1)
k hk(·). (9)

Since each of the gj is equal to an hk, which we denote by hk(j), we have that (9) equals:

∑

j

β
(0)
j fj(1)hk(j)(·) +

∑

k

β
(1)
k hk(·)

=
∑

k







∑

j:k(j)=k

β
(0)
j fj(1)







hk(·) +
∑

k

β
(1)
k hk(·)

(where, if for some k, {j : k(j) = k} is empty, we define
∑

j:k(j)=k to be 0)

=
∑

k







∑

j:k(j)=k

β
(0)
j fj(1) + β

(1)
k







hk(·)
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=
∑

j

0 · fj(1)gj(·) +
∑

k







∑

j:k(j)=k

β
(0)
j fj(1) + β

(1)
k







hk(·) = µ1(·, β
∗)

=
∑

j

0 · fj(0)gj(·) +
∑

k







∑

j:k(j)=k

β
(0)
j fj(1) + β

(1)
k







hk(·) = µ0(·, β
∗),

where we can define β∗ component-wise by inspection to match the definition of (8) (i.e., the

components of β∗ for the first summand in (8) are 0, and for the second summand in (8) are
∑

j:k(j)=k β
(0)
j fj(1) + β

(1)
k ) . Hence (µ0(·, β), µ1(·, β)) ∈ Smeans implies that (µ0(·, β), µ0(·, β)) ∈

Smeans (because the latter pair equals to (µ0(·, β
∗), µ1(·, β

∗))). The analogous argument can be

used to show that (µ1(·, β), µ1(·, β)) ∈ Smeans. Therefore, Criterion 2 is satisfied and so Result

2 holds for the class of generalized linear models of the form (8).
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Table 1

Comparison of the performance of the MANCOVA and parametric
quadratic models on the DIADS data.

Model Type I Error Power p-value in these data
mancova 0.05 0.61 0.10

parametric 0.05 0.69 0.04
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Figure 1: Depiction of the proposed criterion.
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Figure 2: The observed CSDD measurements (black for placebo; red for sertraline arm) in the
DIADS trial and the fitted means (dotted curves) from the nonparametric (MANCOVA, left)
and parametric (quadratic, right) models.

Web Appendices referenced in Section 4 are available under the Paper Information link at

the Biometrics website http://www.biometrics.tibs.org.
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