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The time-dependent density functional theory (TDDFT) is the leading computationally feasible the-
ory to treat excitations by strong electromagnetic fields. Here the theory is applied to coherent op-
tical phonon generation produced by intense laser pulses. We examine the process in the crystalline
semimetal antimony (Sb), where nonadiabatic coupling is very important. This material is of par-
ticular interest because it exhibits strong phonon coupling and optical phonons of different symme-
tries can be observed. The TDDFT is able to account for a number of qualitative features of the
observed coherent phonons, despite its unsatisfactory performance on reproducing the observed di-
electric functions of Sb. A simple dielectric model for nonadiabatic coherent phonon generation is
also examined and compared with the TDDFT calculations. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4739844]

I. INTRODUCTION

In this paper, we apply time-dependent density functional
theory (TDDFT) to calculate coherent phonon generation in
crystalline solids. There is fairly clear separation between adi-
abatic and nonadiabatic regimes for this process, depending
on the material and the frequency of the external electromag-
netic field. We first summarize the physical aspects of the
phonon generation.

Coherent optical phonons generated by high-intensity, ul-
trashort laser pulses can be easily observed by pump-probe
experiments that are sensitive to the changes in the index of
refraction of the probed material. In particular, the phases
of the phonons can be extracted from the reflectivity change
plotted against the delay time of the reflected probe pulse.
These experiments have been done for many kinds of mate-
rials. The coupling to optical phonons is especially strong in
the semimetals Bi and Sb, and our calculations here will be for
crystalline Sb. An example of the kind of data that motivate
this choice is shown in Fig. 1.1 The pump and the probe pulses
are directed on the [01̄12] surface of a Sb crystal at nearly
normal incidence. The change in the reflectivity of the probe
pulse is measured as a function of the delay between the pump
and the probe. One sees an oscillatory pattern whose frequen-
cies can be identified with the known optical phonons in the
crystal. The crystal symmetry imposes some conditions be-
tween the polarization of the pump pulse and the probe pulse.
That information has been used in the experiment to separate
the contribution of the Eg phonon from that of the A1g phonon.
The signal label “isotropic” is due to the A1g phonon while the
one labeled “anisotropic” is due to the Eg phonon.

For a given phonon, the reflectivity change is often pa-
rameterized by the functional form

!R

R
= ge−"t cos(ωpht + φ), (1)

where g is the amplitude, ωph is the phonon angular frequency,
" is a damping constant, and φ is a phase angle. The phase
angle φ provides a very sensitive measure of the mechanism
for the phonon generation. If the mechanism is adiabatic, the
phase angle should be close to π /2, as will be discussed below.
Typically this is achieved in insulators when the laser photon
energy is below the direct band gap. This is called the “im-
pulsively stimulated Raman scattering” (ISRS) mechanism,2

because the entire process can be described in terms of the
Raman couplings for exciting a single phonon by a single
photon. This process occurs for laser pulses whose duration
is shorter than the vibrational frequency. In this mechanism,
the coherent phonon coupling depends only on measurable
dielectric properties of the medium. The equation of motion
in the phonon coordinate is given by a simple formula of
Merlin,3

d2q

dt2
+ ω2

phq = F (t) = 1
2
∂χ

∂q
|E(t)|2 . (2)

Here q is the phonon coordinate, χ is a component of the
dielectric susceptibility tensor, and E is a corresponding com-
ponent of the electric field.

When real excitations of the medium are possible, an-
other process called the displacive mechanism can contribute
as well.4–6 This mechanism takes place in opaque materi-
als such as semimetals and in insulators when the laser fre-
quency is above the direct band gap. In the displacive mech-
anism, the electronic excitations produce a long-term shift
in the charge distribution, changing the equilibrium position
of the phonon coordinates. Thus the pump pulse produces
a state in which the phonon coordinates are displaced from
their new equilibrium positions. If the life-time of the excited
charges is sufficiently long, the oscillation of the phonons
about the new equilibrium will be given by a cosine functional
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FIG. 1. Observation of coherent phonons in crystalline Sb generated by high-
intensity laser pulses of 1.55 eV photon energy. Reprinted with permission
from K. Ishioka, M. Kitajima, and O. Misochko, J. Appl. Phys. 103, 123505
(2008). Copyright c© 2008, American Institute of Physics.

dependence on the time with respect to the pump pulse. Thus,
the displacive mechanism has a phase differing by π /2 with
respect to the ISRS mechanism.

At first sight it would seem that the ISRS and the dis-
placive mechanisms are quite different physical processes. In
an attempt to establish a unified description, Stevens, Kuhl,
and Merlin (SKM) proposed a unified model of to describe
both ISRS and displacive mechanisms in term of the dielec-
tric properties of the medium.7 Their approximate formula for
the Fourier component of the force, F((), is given by

F (() = C

[
dRe(ε)

dω
+ 2iIm(ε)

(

] ∫ +∞

−∞
ei(t |E(t)|2dt, (3)

where E(t) is the laser electric field, ω is the laser frequency,
and ε is the dielectric function. In Sec. IV below we will
compare the formula with the results of the TDDFT dynam-
ics to assess the reliability of the approximations made in
deriving it.

The transition from adiabatic to nonadiabatic coupling
has been observed in crystalline Si (Refs. 8–10) as a rather
rapid change of phonon phase as the laser photon energy
crosses the direct band gap. We have previously applied
TDDFT to this system and found that it clearly reproduced
this transition.11, 12 In this work we will use the same com-
putational framework, but applied to a semimetal rather than
a semiconductor having a very well defined band gap. How-
ever, due to the different crystal symmetry (A7 rather than
cubic) the codes had to be significantly modified to treat
Sb. In Sec. III we briefly summarize the computational as-
pects, in particular, the extensions needed for the present
application.

II. TIME-DEPENDENT DENSITY FUNCTIONAL
THEORY

We have found that the Lagrangian formulation of the dy-
namics problem is very helpful not only from a formal point
of view but also to construct the computational equations
of motion satisfying the necessary conservation laws. The

Lagrangian we used in our earlier study11, 13 contains the fol-
lowing elements:

(1) a fully microscopic treatment for the electron dynam-
ics using a Kohn-Sham (KS) energy functional to evolve the
time-dependent electron orbitals;

(2) a classical treatment of the time-dependent electric
field in the crystalline unit cell;

(3) a classical treatment of the dynamics of ionic centers,
often called “Ehrenfest dynamics.”

We write the Lagrangian as a sum of three terms, the
Kohn-Sham, electromagnetic, and ionic parts,

L = LKS + Lem + Lion. (4)

The Kohn-Sham term is given by the following integral over
the unit cell (:

LKS =
∑

i

∫

(

d#r
{
ψ∗

i i
∂

∂t
ψi − 1

2m

∣∣∣
(
−i #∇ + e

c
#A
)
ψi

∣∣∣
2
}

−
∫

(

d#r {(enion − ene) φ − Exc[ne]} . (5)

The variables here are the electron orbitals ψi(#r, t), the elec-
tric field potentials, φ(#r, t) and #A(t), and the ionic coordinates
#Rα(t). The vector potential #A(t) is a function of time with-

out spatial dependence and describes spatially uniform elec-
tric field, while a scalar potential φ(#r, t) is periodic in the unit
cell. The separation of the electric field into these two compo-
nents is crucial to our computational scheme.14, 15 It enables
us to apply Bloch theorem for electron orbitals ψ i at each
time. The ionic density nion is described with the ionic coor-
dinates Rα and the electron density ne with the Kohn-Sham
orbitals.

We employ the same exchange-correlation energy func-
tional Exc[n] for dynamical calculation as that is used for the
ground state calculation. This is the well-known “adiabatic
approximation” in time-dependent density functional theory.
This does not mean that we assume adiabatic electron dynam-
ics: In our calculation, orbitals which are not occupied in the
ground state mix with occupied orbitals in ψ i in the time evo-
lution. In this sense, the electron dynamics in an external field
can be highly non-adiabatic.

The electromagnetic Lagrangian is taken as

Lem = 1
8π

∫

(

d#r| #∇φ|2 + (

8πc2

(
d #A
dt

)2

. (6)

This form is sufficient to treat the coupling in the medium
at length scales small compared to the photon wave length.
For the full electrodynamics including the transmission and
reflection of photons from the crystal surface, the Lagrangian
must also include magnetic fields. This has been carried out
in another context, namely, the deposition of energy by strong
laser pulses.16

We separate the vector potential #A(t) into external
field contribution #Aext (t) and induced polarization #Aind (t).
Whether to include the induced polarization or not in #A(t)
depends on the macroscopic geometry of the sample and the
polarization direction of the electric field. In the present cal-
culation, we employ the longitudinal geometry in which the
induced field is included in #A(t).
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Finally, the dynamics in the ion coordinates #Rα is gov-
erned by the classical Lagrangian,

Lion = 1
2

∑

α

Mα

(
d #Rα

dt

)2

+ 1
c

∑

α

Zαe
d #Rα

dt
#A. (7)

This Lagrangian leads to the following Newtonian equation
of motion for ion dynamics:

Mα

d2 #Rα

dt2
= −e

c
Zα

d #A
dt

− ∂

∂ #Rα

∫

(

d#renionφ. (8)

At a formal level, we were able to prove that the TDDFT
dynamics reduces to the ISRS formula, Eq. (2), in the limit
where the laser pulse does not deposit energy into the elec-
tronic degrees of freedom.11 In this adiabatic regime, the rel-
evant dielectric properties can be calculated in perturbation
theory based on static density functional theory (DFT), as
was done in an early calculation of Raman scattering in Si
crystals.17 In our full TDDFT calculation in Ref. 11, we found
that the theory could describe both the adiabatic ISRS and the
displacive mechanisms of excitations, thus providing a com-
prehensive framework for treating coherent laser-lattice inter-
actions.

In practical calculations shown below, we freeze the
positions of ions during the calculation. This treatment ig-
nores further nonlinear effects caused by the changes of ionic
positions.

III. APPLICATION TO ANTIMONY

A. Numerical implementation

The solver for the time-dependent Kohn-Sham (KS)
equation is a key element for practical computations. Our im-
plementation of the KS solver uses a 3-dimensional real-space
grid to represent the orbital wave functions.18 This is straight-
forward for molecules and other finite systems as well as ex-
tended materials with cubic crystalline symmetry such as Si.
However, Sb has only a rhombic crystal symmetry, and the
grid must be modified accordingly. Fortunately, crystals such
as the rhombic have a three-fold symmetry axis, allowing the
primitive hexagonal unit cell to be embedded in a supercell
having the shape of a rectangular parallelepiped. The con-
struction is shown in Fig. 2. The hexagonal face on the top
of the cell is replaced by a rectangle of axes ratio

√
3 : 1. The

Cartesian periodicity needed by the KS solver can then be
achieved by changing the mesh spacings in each dimension
so that the supercell is spanned by an integer number of mesh
points in each direction.

In the case of Sb, the crystal structure is only slightly dis-
torted from cubic, which helps one to construct the lattice as
well as to understand the character of the optical phonons.
The idealized undistorted lattice is constructed from a simple
cubic lattice as shown in Fig. 2. This structure can also be
viewed as two interpenetrating face-centered cubic lattices,
distinguished in the figure by the red and blue colors of the
atoms. The c-axis of the cell goes along the [111] direction
of the cubes. The length of the c-axis in the undistorted ge-
ometry is

√
6 larger than the short axis. The actual struc-

FIG. 2. Idealized cubic unit cell illustrating the embedding of the orthorhom-
bic unit cell onto the rectangular supercell. The orthorhombic cell is outlined
by the hexagonal prism. Two simple cubes are shown with their [111] axes
along the c-axis of the supercell. The 12 atoms of the supercell are shown with
filled circles. The red and blue atoms define interpenetrating face-centered
lattices. The c-axis is slightly elongated to obtain the actual rhombic lattice.
In addition, there is a small shift of the red with respect to the blue sublattice
along the c-axis.

ture is now obtained by making two transformations. First,
the c-axis is elongated by a factor of 1.065. Second, one of
the cubes is displaced by a small amount (3.3%) along the
c-axis with respect to the middle of the other cubic. This dis-
placement of the two sublattices with respect to each other
defines the coordinates of the optical phonons. Displacements
along the c-axis give rise to the A1g phonon. Displacements
perpendicular to the c-axis give rise to the doubly degener-
ate Eg phonon. In a perfectly cubic system all three modes
would be degenerated. The offset equilibrium position in the
distorted lattice breaks the degeneracy between the frequen-
cies of the A1g and Eg phonons, 4.65 THz and 3.47 THz,
respectively.

For our representation of Sb, the supercell contains
12 atoms and has dimensions (1,

√
3,

√
6 × 1.065)a with

a = 8.12 a.u. We take a mesh of 14 × 30 × 48 points giv-
ing mesh spacings of (0.58, 0.47, 0.44) a.u. The solver is de-
scribed in detail in previous publications. Here we just note
that we use a time step of !t = 0.04 a.u., which is sufficiently
small for the time evolution to be stable. Typically electron
orbitals are evolved for 20 000 time steps.

At each time step, the KS wave functions are calculated
for a grid of 163 k-points in the Brillouin zone. The densi-
ties for each grid point are summed to obtain an updated KS
operator for the next time step. It is convenient to parallelize
the code by distributing the calculations for the k-points to
different processors.

The ionic motion is very small during the time of passage
of the pump pulse, and we do not attempt to solve Newton’s
equations directly within the time-dependent evolution of the
system. As in Ref. 11, the code only calculates the force on the
ions. This is later decomposed a transient part and a constant
part in the final state for the final analysis.

The energy functional in our calculations treats explicitly
the five electrons in the (5s)2(5p)3 atomic orbitals. The inter-
action with the ionic cores is taken as the Troullier-Martins19

pseudopotential with the range of the nonlocality of 4.0 a.u.
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The electron-electron interaction is treated in the local density
approximation using the standard parameterization.20

B. Calculated electronic structure

The group V elements, As, Sb, and Bi, have a compli-
cated band structure due their rhombohedral A7 crystalline
symmetry. They are distinguished by a small but nonzero
overlap between nominally valence and conduction bands.
This gives the crystal the characteristics of a semimetal,
namely, a conductor with a very small carrier density. There
are several DFT calculations of the electronic structure which
reproduce this important feature.21, 22 For example, the calcu-
lation of Ref. 21 found a carrier density of 2.3 × 10−3 elec-
trons per atom in Sb compared to the experimental value of
1.1 × 10−3. Our DFT calculation gives a similar density of
electron states and a carrier density of 2.4 × 10−3 electrons
per atom. In any case, details of the density of states within a
few tenths of eV of the Fermi level should not be crucial to
the dynamics at the much higher energy of the laser photon.

Beyond the static electronic structure, it is important to
establish the accuracy of the linear response predictions if the
dynamic electronic properties are the object of the calcula-
tions. There do not seem to be any DFT calculations of the
dielectric properties in the literature, so we describe our re-
sults in some detail in the Appendix. Unfortunately, our pre-
dicted dielectric properties do not agree well with the evalu-
ated measurements.23 However, the evaluated dielectric func-
tion is derived from the measured reflectivity function which
seems to depend significantly on temperature. In fact our pre-
dicted reflectivity agrees fairly well with the data at 77 K but
not with room temperature data. Since that experimental find-
ing seems not to be understood up to now, we cannot draw
any strong conclusions about the origin of the disagreement
with theory. In any case, our TDDFT results can be compared
with the simple models to evaluate the reliability of the ap-
proximations made in the models.

C. Typical results

In this section, we show the results of the time-dependent
calculations for typical conditions. As shown in Fig. 2, we set
the z-axis in our calculation parallel to the c-axis. The form of
the external electric field is chosen as

#Eext (t) = x̂E0 sin(π t/T ) sin(ωt), (9)

where the polarization direction is chosen along the x-axis,
E0 is the maximum value of the electric field, ω is the laser
frequency, and T is the pulse duration. Crystal symmetry per-
mits this field to excite the A1g mode and one of the two-fold
degenerate Eg modes which is mainly along the x direction.

As we mentioned in Sec. II, we include the induced po-
larization field in the vector potential #A(t). For a sufficiently
weak electric field, the external and the total (external + in-
duced) electric fields are related to each other by the dielectric
function,

Etot (t) =
∫ t

ε−1(t − t ′)Eext (t ′)dt ′. (10)
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FIG. 3. External and screened electric fields in the Sb crystal. See text for
explanation.

The external and total fields for a typical run are shown in
Fig. 3. Here the parameters for the external field are taken as
¯ω = 1.6 eV, T = 16 fs, and E0 corresponding to an intensity
of 1013 W/cm2.

We see that the total field is almost out of phase to the
external field and about 66 times smaller in amplitude. The
ratio and the phase between the two correspond well to the
calculated dielectric function at ω = 1.6 eV/¯, shown in
Fig. 9, even though the dielectric function is only strictly valid
in the small amplitude regime.

The electron density in two planes through the unit cell
is shown in Fig. 4. In panel (a), the atomic positions in the
rectangular supercell are depicted with the actual distortion
of the cubic lattice into rhombohedral. The electron densities
are shown in panels (b)–(d) on planes indicated by green-solid
and purple-dashed frames. The green-solid frame is the xz-
plane through the middle of the unit cell. This plane includes
the polarization direction of the electric field as well as the c-
axis of the crystal. The purple-dashed frame is obtained by ro-
tating the xz-plane by 120◦ around the c-axis passing through
the central atom.

The ground-state electron density, shown in (b), is the
same in the two planes. Each atom has three bonds with
nearest neighbors and one of the bonds lies within each
plane. Among five valence electrons, three of them are as-
sociated with the bonds and two of them occupy lone-pair
orbitals.

The particle-hole excitation changes the occupation prob-
abilities in the final state, affecting the electron density distri-
bution. This is shown in two panels, (c) and (d). The panel (c)
shows the change of electron density from that in the ground
state in the zx plane of the green-solid frame in (a). The orange
color indicates increase of the electron density from the grand
state, while the blue color indicates decrease. The panel (d)
shows the change of electron density in the plane of purple-
dashed frame in (a).

There are two spatial regions where electron density
changes most from that in the ground state. One is the exci-
tation from lone-pair orbitals. This corresponds to the region
just above and below the positions of atoms indicated as A
in (c). This change is seen both in (c) and (d). The other is the
excitation out of the bonding orbitals, causing a decrease of
the density around the midpoint of the bonds. This removal of
bonding electrons is seen clearly in (c) in the areas indicated
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(a) (b)

(c)

A B

A
C

(d)

FIG. 4. (a) Atomic positions in the rectangular unit cell. An xz-plane through
the middle of the cell is framed in a solid green rectangle. The purple-dashed
frame marks the plane obtained by rotating green-solid frame by 120◦ around
the c-axis. (b) The ground state electron density on the two planes. (c) Den-
sity change in the final state on the xz-plane (green-solid frame). (d) Density
change on the rotated plane (purple-dashed frame).

as B in (c). The effect is much smaller in (d) because the elec-
tric field vector is not in the plane of the that bond. We also
note that increase of electrons density is seen in the area C in
(c), not in (d). These anisotropic changes of electron density
certainly contribute to the force on the optical phonon modes,
which we now discuss.

The next two figures show the force on the phonon modes
for the external field of Fig. 3. In Fig. 5, the external field is in
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FIG. 6. Force on phonon modes excited by the external field in the z-
direction.

the x direction. The Eg phonon excitation will then also be in
the x direction; the A1g phonon is always along the z axis. The
oscillatory part of the force may be associated with the ISRS
excitation mechanism. The force reaches a constant plateau
at the end of the pulse; its plateau value controls the strength
of the displacive mechanism. Note that the A1g mode is much
stronger than the Eg mode. This agrees with the experimen-
tal measurements, which always see a larger effect for the A1g

mode. Fig. 6 shows the forces resulting from the same exter-
nal field but oriented along the z axis. The strength of the A1g

force is about the same as in the other orientation, but now the
Eg force vanishes. This is consequence of the crystal symme-
try. In panel (b) of Fig. 5, we integrate the equation of motion
for the phonon mode to find the displacement as a function of
time. Since the force is constant in the final state, the displace-
ment function will be close to the form 1 − cos (ωph(t − t0)),
where t0 is near the maximum amplitude point of the driving
field. Thus the phonon will have a displacive phase. In fact we
find that the displacive mechanism dominates for all external
field frequencies in the range of 1.0–3.0 eV/¯.

We now turn to the phase of the coherent phonon.
The displacive mechanism dominates for both modes in the
TDDFT calculation, as is clear from the force plateaus in
Figs. 5 and 6. The experiments reported in Refs. 1 and 24
obtain a phase consistent with the displacive mechanism for
the A1g, in agreement with the TDDFT. However, they find
a difference in phase for the Eg mode, which is not ex-
plained by the theory. One possible origin of the phase differ-
ences could be differences in relaxation times of excited car-
riers responsible for two mode. Unfortunately, the electronic
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FIG. 5. (a) Force on phonon modes excited by the external field in the x-direction. (b) Corresponding displacement of phonon coordinates.
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relaxation in the final state is beyond the scope of the present
scheme, ALDA for exchange-correlation energy and Ehren-
fest dynamics for nuclear motion.

IV. COMPARISON WITH THE SKM MODEL

In Ref. 7, Stevens, Kuhl, and Merlin proposed a dielectric
model for the force acting on phonon mode. Taking Fourier
transform of Eq. (3), we may obtain the force as a function of
time,

F (t) = C

[
dRe(ε)

dω
|E(t)|2 + 2Im(ε)

∫ t

−∞
dt ′|E(t ′)|2

]
. (11)

This formula indicates that the real part of ε is related to the
impulsive force, F(t) ∼ |E(t)|2, corresponding to the ISRS
mechanism, while the imaginary part of ε gives a constant
force at t → +∞ corresponding to the displacive mechanism.
In this section, we will make a theory-to-theory comparison
of this equation within the TDDFT dynamics. We compare
the force at t → +∞ as a function of laser frequency with
the imaginary part of the dielectric function, and examine the
validity of the dielectric model.

Figure 7 show the plateau values of the force at t → +∞.
In this figure, the intensity of the external electric field is taken
to be the same. However, the electric field in Eq. (11) is the
actual electric field in the medium. We take this into account
by scaling our calculated force by |ε(ω)|2 to compare with the
imaginary part of the dielectric function.

In Fig. 8, we show the forces multiplied with |ε(ω)|2.
The top panel shows the results for the electric field in the x-
direction. The force calculated in TDDFT is shown as green
squares and red circles. The bottom panel shows the quanti-
ties for the electric field in the z-direction. The Eg force van-
ishes by symmetry and is not shown. We find the forces as a
function of frequency exhibit different behavior depending on
phonon modes and polarization of electric field.
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We test the SKM model by comparing the forces with the
imaginary part of the dielectric function which is shown in the
Appendix. In the top panel, the imaginary part of the dielectric
function in x-direction, Imεxx, normalized to reproduce the
magnitude of the Eg force (red circles) is shown. One sees
that the model reproduces the frequency dependence of the
Eg force quite well. In the bottom panel, Imεzz normalized to
reproduce the magnitude of the A1g force (green squares) is
shown. The model again reproduces the trend of the A1g force
quite well. In both cases, the model describes the variation in a
force when the phonon coordinates are parallel to the electric
field. However, for the A1g force in the top panel, the force
along z-direction in the x polarization direction, the frequency
dependence does not resemble either Imεxx or Imεzz.

V. CONCLUSIONS AND OUTLOOK

The TDDFT has given us a calculational framework to
study the transition from adiabatic to nonadiabatic processes
in extended systems. In previous work, we found that an im-
portant qualitative aspect of the transition, namely, the phase
of the coherently generated phonon, was correctly reproduced
by the theory in crystalline silicon. In this work, we have
applied the same methodology to a more challenging ma-
terial, namely, the semimetal antimony. The noncubic sym-
metry presents some computational problems that have been
overcome. The optical phonons have a more rich spectroscopy
than in the cubic systems, and there are symmetry-dictated de-
pendencies that are reproduced by the theory. Unfortunately,
the present theory is not accurate enough at the linear re-
sponse level to give quantitative predictions for the coherent
phonon generation. At a qualitative level, the theory predicts
a nonadiabatic response over a wide range of frequencies. At
the experimentally measured frequency, the A1g mode shows
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FIG. 9. Calculated dielectric tensor ε(ω), real-part in the left and imaginary-part in the right panels. Red: xx component; blue: zz component.

the nonadiabatic behavior but the observed phase of the Eg

mode is different.
This study points out the need for a more accurate theory

of the electronic structure of Sb. It might be that the sp space
is too restrictive; there is a closed d shell close to the Fermi
energy that could be easily polarized. Also, the theory needs
to be developed to treating the transmission and reflection of
the electromagnetic pulses from the interfaces of the media,
in order to describe the measurements quantitatively.
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APPENDIX: DIELECTRIC PROPERTIES OF Sb

It is important to check how well the TDDFT performs
in the linear response region, if one wishes to extend the do-
main to nonlinear processes. To that end, we first calculate the
dielectric properties using the TDDFT and following the real-
time method proposed in Ref. 14. There are two independent
components of the dielectric tensor in crystals of A7 symme-
try, εxx and εzz in our coordinate system. They are shown in
Fig. 9. In the low frequency limit, the real parts are domi-
nated by the free carriers and go to negative infinity. At in-
termediate frequencies the real part is very anisotropic but
becomes isotropic above 2 eV. The imaginary part is also very
anisotropic in the energy range below 3 eV.

The compilation23 of evaluated experimental dielectric
functions has a table of εxx for Sb, which we compare with
in Fig. 10. In both theory and experiment, one sees large ab-
sorption strength at low frequencies tapering off smoothly as
the frequency increases. However, the agreement is not good
at a quantitatively level, unlike the situation in simple cubic
materials. The theory is also disappointing for describing the
real part of εxx.

In an attempt to get some insight into possible origins
of the disagreement, we went back to the actual reflectiv-
ity data25 that were used to obtain the dielectric function.
These data have an unexplained temperature dependence with
a significantly higher reflectivity at 77 K. The theoretical
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FIG. 10. Calculated εxx compared with evaluated data of Ref. 23. Real-part in the left and imaginary-part in the right panels, respectively.
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FIG. 11. Calculated reflectivity of Sb compared with experiment.25 Line:
theory; solid squares: room temperature data; solid circles: data at 77 K.

reflectivity, R, is easily evaluated as

R =
∣∣∣∣
ε1/2 − 1
ε1/2 + 1

∣∣∣∣ . (A1)

The comparison between experimental and theoretical R is
shown in Fig. 11. The theory clearly disagrees with the
room-temperature data. However, it reproduces rather well
the low temperature data up to about 5 eV photon energy.
Whether this is a pure accident or suggests some missing
physics we cannot say.
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