77 research outputs found

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Enterovirus specific anti-peptide antibodies

    Get PDF
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot, and mouth disease (HFMD) which is generally regarded as a mild childhood disease. In recent years, EV71 has emerged as a significant pathogen capable of causing high mortalities and severe neurological complications in large outbreaks in Asia. A formalin-inactivated EV71 whole virus vaccine has completed phase III trial in China but is currently unavailable clinically. The high cost of manufacturing and supply problems may limit practical implementations in developing countries. Synthetic peptides representing the native primary structure of the viral immunogen which is able to elicit neutralizing antibodies can be made readily and is cost effective. However, it is necessary to conjugate short synthetic peptides to carrier proteins to enhance their immunogenicity. This review describes the production of cross-neutralizing anti-peptide antibodies in response to immunization with synthetic peptides selected from in silico analysis, generation of B-cell epitopes of EV71 conjugated to a promiscuous T-cell epitope from Poliovirus, and evaluation of the neutralizing activities of the anti-peptide antibodies. Besides neutralizing EV71 in vitro, the neutralizing antibodies were cross-reactive against several Enteroviruses including CVA16, CVB4, CVB6, and ECHO13

    Системный анализ процесса затвердевания литых заготовок разной массы и назначения

    Get PDF
    Выявлены особенности пространственно-временной эволюции температурных полей в процессе затвердевания разных заготовок (слитков и отливок) для повышения их качества.Виявлено особливості просторово-часової еволюції температурних полів в процесі тверднення різних заготовок (зливків та виливків) для підвищення їх якості.It is revealed the peculiarities of distance-time evolution of the temperature fields in solidification process different billets (ingots and casts) for raise them quality

    Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes

    Get PDF
    Most of the cell biological aspects of retroviral genome dimerization remain unknown. Murine leukemia virus (MLV) constitutes a useful model to study when and where dimerization occurs within the cell. For instance, MLV produces a subgenomic RNA (called SD') that is co-packaged with the genomic RNA predominantly as FLSD' heterodimers. This SD' RNA is generated by splicing of the genomic RNA and also by direct transcription of a splice-associated retroelement of MLV (SDARE). We took advantage of these two SD' origins to study the effects of transcription and splicing events on RNA dimerization. Using genetic approaches coupled to capture of RNA heterodimer in virions, we determined heterodimerization frequencies in different cellular contexts. Several cell lines were stably established in which SD' RNA was produced by either splicing or transcription from SDARE. Moreover, SDARE was integrated into the host chromosome either concomitantly or sequentially with the genomic provirus. Our results showed that transcribed genomic and SD' RNAs preferentially formed heterodimers when their respective proviruses were integrated together. In contrast, heterodimerization was strongly affected when the two proviruses were integrated independently. Finally, dimerization was enhanced when the transcription sites were expected to be physically close. For the first time, we report that splicing and RNA dimerization appear to be coupled. Indeed, when the RNAs underwent splicing, the FLSD' dimerization reached a frequency similar to co-transcriptional heterodimerization. Altogether, our results indicate that randomness of heterodimerization increases when RNAs are co-expressed during either transcription or splicing. Our results strongly support the notion that dimerization occurs in the nucleus, at or near the transcription and splicing sites, at areas of high viral RNA concentration

    Biochemical Characterization and Evaluation of a Brugia malayi Small Heat Shock Protein as a Vaccine against Lymphatic Filariasis

    Get PDF
    Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential

    Mycobacterium tuberculosis epitope-specific interferon-g production in healthy Brazilians reactive and non-reactive to tuberculin skin test

    Get PDF
    The interferon (IFN)-gamma response to peptides can be a useful diagnostic marker of Mycobacterium tuberculosis (MTB) latent infection. We identified promiscuous and potentially protective CD4(+) T-cell epitopes from the most conserved regions of MTB antigenic proteins by scanning the MTB antigenic proteins GroEL2, phosphate-binding protein 1 precursor and 19 kDa antigen with the TEPITOPE algorithm. Seven peptide sequences predicted to bind to multiple human leukocyte antigen (HLA)-DR molecules were synthesised and tested with IFN-gamma enzyme-linked immunospot (ELISPOT) assays using peripheral blood mononuclear cells (PBMCs) from 16 Mantoux tuberculin skin test (TST)-positive and 16 TST-negative healthy donors. Eighty-eight percent of TST-positive donors responded to at least one of the peptides, compared to 25% of TST-negative donors. Each individual peptide induced IFN-gamma production by PBMCs from at least 31% of the TST-positive donors. the magnitude of the response against all peptides was 182 +/- 230 x 10(6) IFN-gamma spot forming cells (SFC) among TST-positive donors and 36 +/- 62 x 10(6) SFC among TST-negative donors (p = 0.007). the response to GroEL2 (463-477) was only observed in the TST-positive group. This combination of novel MTB CD4 T-cell epitopes should be tested in a larger cohort of individuals with latent tuberculosis (TB) to evaluate its potential to diagnose latent TB and it may be included in ELISPOT-based IFN-gamma assays to identify individuals with this condition.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Fac Med, Inst Coracao, Immunol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Fac Med, Dept Med, Div Imunol Clin & Alergia, São Paulo, BrazilFundacao Oswaldo Cruz, Lab Avancado Saude Publ, Salvador, BA, BrazilEscola Bahiana Med & Saude Publ, Salvador, BA, BrazilInst Invest Immunol, São Paulo, BrazilUniversidade Federal de São Paulo, Fac Med, Inst Coracao, Immunol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Fac Med, Dept Med, Div Imunol Clin & Alergia, São Paulo, BrazilWeb of Scienc

    MYCOBACTERIUM-TUBERCULOSIS EXPRESSES 2 CHAPERONIN-60 HOMOLOGS

    No full text
    A 65-kDa protein and a 10-kDa protein are two of the more strongly immunoreactive components of Mycobacterium tuberculosis, the causative agent of tuberculosis. The 65-kDa antigen has homology with members of the GroEL or chaperonin-60 (Cpn60) family of heat shock proteins. The 10-kDa antigen has homology with the GroES or chaperonin-10 family of heat shock proteins. These two proteins are encoded by separate genes in M. tuberculosis. The studies reported here reveal that M. tuberculosis contains a second Cpn60 homolog located 98 bp downstream of the 10-kDa antigen gene. The second Cpn60 homolog (Cpn60-1) displays 61% amino acid sequence identity with the 65-kDa antigen (Cpn60-2) and 53% and 41% identity with the Escherichia coli GroEL protein and the human P60 protein, respectively. Primer-extension analysis revealed that transcription starts 29 bp upstream of the translation start of the Cpn60-1 homolog and protein purification studies indicate that the cpn60-1 gene is expressed as an approximately 60-kDa polypeptide
    corecore