262 research outputs found
Advanced Glycation End Products Induce PeroxisomeProliferator-Activated Receptor c Down-Regulation-Related Inflammatory Signals in Human Chondrocytesvia Toll-Like Receptor-4 and Receptor for AdvancedGlycation End Products
Accumulation of advanced glycation end products (AGEs) in joints is important in the development of cartilage destruction and damage in age-related osteoarthritis (OA). The aim of this study was to investigate the roles of peroxisome proliferator-activated receptor γ (PPARγ), toll-like receptor 4 (TLR4), and receptor for AGEs (RAGE) in AGEs-induced inflammatory signalings in human OA chondrocytes. Human articular chondrocytes were isolated and cultured. The productions of metalloproteinase-13 and interleukin-6 were quantified using the specific ELISA kits. The expressions of related signaling proteins were determined by Western blotting. Our results showed that AGEs enhanced the productions of interleukin-6 and metalloproteinase-13 and the expressions of cyclooxygenase-2 and high-mobility group protein B1 and resulted in the reduction of collagen II expression in human OA chondrocytes. AGEs could also activate nuclear factor (NF)-κB activation. Stimulation of human OA chondrocytes with AGEs significantly induced the up-regulation of TLR4 and RAGE expressions and the down-regulation of PPARγ expression in a time- and concentration-dependent manner. Neutralizing antibodies of TLR4 and RAGE effectively reversed the AGEs-induced inflammatory signalings and PPARγ down-regulation. PPARγ agonist pioglitazone could also reverse the AGEs-increased inflammatory signalings. Specific inhibitors for p38 mitogen-activated protein kinases, c-Jun N-terminal kinase and NF-κB suppressed AGEs-induced PPARγ down-regulation and reduction of collagen II expression. Taken together, these findings suggest that AGEs induce PPARγ down-regulation-mediated inflammatory signalings and reduction of collagen II expression in human OA chondrocytes via TLR4 and RAGE, which may play a crucial role in the development of osteoarthritis pathogenesis induced by AGEs accumulation
Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum
In this study the phenolic compounds piceid, resveratrol and emodin were extracted from P. cuspidatum roots using ultrasound-assisted extraction. Multiple response surface methodology was used to optimize the extraction conditions of these phenolic compounds. A three-factor and three-level Box-Behnken experimental design was employed to evaluate the effects of the operation parameters, including extraction temperature (30-70 °C), ethanol concentration (40%-80%), and ultrasonic power (90-150 W), on the extraction yields of piceid, resveratrol, and emodin. The statistical models built from multiple response surface methodology were developed for the estimation of the extraction yields of multi-phenolic components. Based on the model, the extraction yields of piceid, resveratrol, and emodin can be improved by controlling the extraction parameters. Under the optimum conditions, the extraction yields of piceid, resveratrol and emodin were 10.77 mg/g, 3.82 mg/g and 11.72 mg/g, respectively
Nanoparticles prepared from the water extract of Gusuibu (Drynaria fortunei J. Sm.) protects osteoblasts against insults and promotes cell maturation
Our previous study showed that Gusuibu (Drynaria fortunei J. Sm.) can stimulate osteoblast maturation. This study was further designed to evaluate the effects of nanoparticles prepared from the water extract of Gusuibu (WEG) on osteoblast survival and maturation. Primary osteoblasts were exposed to 1, 10, 100, and 1000 μg/mL nanoparticles of WEG (nWEG) for 24, 48, and 72 hours did not affect morphologies, viability, or apoptosis of osteoblasts. In comparison, treatment of osteoblasts with 1000 μg/mL WEG for 72 hours decreased cell viability and induced DNA fragmentation and cell apoptosis. nWEG had better antioxidant bioactivity in protecting osteoblasts from oxidative and nitrosative stress-induced apoptosis than WEG. In addition, nWEG stimulated greater osteoblast maturation than did WEG. Therefore, this study shows that WEG nanoparticles are safer to primary osteoblasts than are normal-sized products, and may promote better bone healing by protecting osteoblasts from apoptotic insults, and by promoting osteogenic maturation
IDENTIFIKASI JIWA KEWIRAUSAHAAN PADA PEMILIK MAFASARI FURNITURE BERDASARKAN TEORI MEREDITH
Penelitian ini berjudul : “IDENTIFIKASI JIWA KEWIRAUSAHAAN PADA PEMILIK MAFASARI FURNITURE BERDASARKAN TEORI MEREDITH” dengan perumusan masalah yaitu bagaimana identifikasi jiwa kewirausahaan pada pemilik MAFASARI furniture berdasarkan teori Meredith ?. Adapun yang menjadi tujuan penelitian ini adalah untuk mengidentifikasi jiwa kewirausahaaan pemilik MAFASARI furniture, berdasarkan teori yang dikemukakan oleh Meredith.
Dari hasil identifikasi yang telah didapat, yaitu pemilik MAFASARI furniture memiliki jiwa kewirausahaan yang sesuai dengan teori Meredith, dimana terdapat 6 variabel didalam teori tersebut, yaitu percaya diri, berorientasikan tugas dan hasil, berani mengambil risiko, kepemimpinan, keorisinilan, dan berorientasi ke masa depan. Dari ke-enam variabel tersebut, seluruhnya telah dipenuhi oleh Bapak Slamet Raharjo selaku pemilik dari MAFASARI furniture. Metode pengumpulan data yang digunakan dalam penelitian ini adalah dengan menggunakan metode wawancara
Major Functional Transcriptome of an Inferred Center Regulator of an ER(−) Breast Cancer Model System
We aimed to find clinically relevant gene activities ruled by the signal transducer and activator of transcription 3 (STAT3) proteins in an ER(−) breast cancer population via network approach. STAT3 is negatively associated with both lymph nodal category and stage. MYC is a component of STAT3 network. MYC and STAT3 may co-regulate gene expressions for Warburg effect, stem cell like phenotype, cell proliferation and angiogenesis. We identified a STAT3 network in silico showing its ability in predicting its target gene expressions primarily for specific tumor subtype, tumor progression, treatment options and prognostic features. The aberrant expressions of MYC and STAT3 are enriched in triple negatives (TN). They promote histological grade, vascularity, metastasis and tumor anti-apoptotic activities. VEGFA, STAT3, FOXM1 and METAP2 are druggable targets. High levels of METAP2, MMP7, IGF2 and IGF2R are unfavorable prognostic factors. STAT3 is an inferred center regulator at early cancer development predominantly in TN
Statistical identification of gene association by CID in application of constructing ER regulatory network
<p>Abstract</p> <p>Background</p> <p>A variety of high-throughput techniques are now available for constructing comprehensive gene regulatory networks in systems biology. In this study, we report a new statistical approach for facilitating <it>in silico </it>inference of regulatory network structure. The new measure of association, coefficient of intrinsic dependence (CID), is model-free and can be applied to both continuous and categorical distributions. When given two variables X and Y, CID answers whether Y is dependent on X by examining the conditional distribution of Y given X. In this paper, we apply CID to analyze the regulatory relationships between transcription factors (TFs) (X) and their downstream genes (Y) based on clinical data. More specifically, we use estrogen receptor α (ERα) as the variable X, and the analyses are based on 48 clinical breast cancer gene expression arrays (48A).</p> <p>Results</p> <p>The analytical utility of CID was evaluated in comparison with four commonly used statistical methods, Galton-Pearson's correlation coefficient (GPCC), Student's <it>t</it>-test (STT), coefficient of determination (CoD), and mutual information (MI). When being compared to GPCC, CoD, and MI, CID reveals its preferential ability to discover the regulatory association where distribution of the mRNA expression levels on X and Y does not fit linear models. On the other hand, when CID is used to measure the association of a continuous variable (Y) against a discrete variable (X), it shows similar performance as compared to STT, and appears to outperform CoD and MI. In addition, this study established a two-layer transcriptional regulatory network to exemplify the usage of CID, in combination with GPCC, in deciphering gene networks based on gene expression profiles from patient arrays.</p> <p>Conclusion</p> <p>CID is shown to provide useful information for identifying associations between genes and transcription factors of interest in patient arrays. When coupled with the relationships detected by GPCC, the association predicted by CID are applicable to the construction of transcriptional regulatory networks. This study shows how information from different data sources and learning algorithms can be integrated to investigate whether relevant regulatory mechanisms identified in cell models can also be partially re-identified in clinical samples of breast cancers.</p> <p>Availability</p> <p>the implementation of CID in R codes can be freely downloaded from <url>http://homepage.ntu.edu.tw/~lyliu/BC/</url>.</p
Honokiol Induces Calpain-Mediated Glucose-Regulated Protein-94 Cleavage and Apoptosis in Human Gastric Cancer Cells and Reduces Tumor Growth
Background. Honokiol, a small molecular weight natural product, has been shown to possess potent anti-neoplastic and anti-angiogenic properties. Its molecular mechanisms and the ability of anti-gastric cancer remain unknown. It has been shown that the anti-apoptotic function of the glucose-regulated proteins (GRPs) predicts that their induction in neoplastic cells can lead to cancer progression and drug resistance. We explored the effects of honokiol on the regulation of GRPs and apoptosis in human gastric cancer cells and tumor growth. Methodology and Principal Findings. Treatment of various human gastric cancer cells with honokiol led to the induction of GRP94 cleavage, but did not affect GRP78. Silencing of GRP94 by small interfering RNA (siRNA) could induce cell apoptosis. Treatment of cells with honokiol or chemotherapeutics agent etoposide enhanced the increase in apoptosis and GRP94 degradation. The calpain activity and calpain-II (m-calpain) protein (but not calpain-I (mu-calpain)) level could also be increased by honokiol. Honokiol-induced GRP94 down-regulation and apoptosis in gastric cancer cells could be reversed by siRNA targeting calpain-II and calpain inhibitors. Furthermore, the results of immunofluorescence staining and immunoprecipitation revealed a specific interaction of GRP94 with calpain-II in cells following honokiol treatment. We next observed that tumor GRP94 over-expression and tumor growth in BALB/c nude mice, which were inoculated with human gastric cancer cells MKN45, are markedly decreased by honokiol treatment. Conclusions and Significance. These results provide the first evidence that honokiol-induced calpain-II-mediated GRP94 cleavage causes human gastric cancer cell apoptosis. We further suggest that honokiol may be a possible therapeutic agent to improve clinical outcome of gastric cancer
Down-Regulation of Glucose-Regulated Protein (GRP) 78 Potentiates Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC
- …