1,610 research outputs found

    Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode)

    Full text link
    Twisting motions of different nature are observed in several layers of the solar atmosphere. Chromospheric sunspot whorls and rotation of sunspots or even higher up in the lower corona sigmoids are examples of the large scale twisted topology of many solar features. Nevertheless, their occurrence at large scale in the quiet photosphere has not been investigated. The present study reveals the existence of vortex flows located at the supergranular junctions of the quiet Sun. We use a 1-hour and a 5-hour time series of the granulation in Blue continuum and G-band images from FG/SOT to derive the photospheric flows. A feature tracking technique called Balltracking is performed to track the granules and reveal the underlying flow fields. In both time series we identify long-lasting vortex flow located at supergranular junctions. The first vortex flow lasts at least 1 hour and is ~20-arcsec-wide (~15.5 Mm). The second vortex flow lasts more than 2 hours and is ~27-arcsec-wide (~21 Mm).Comment: 4 pages, 10 figure

    Balltracking: an highly efficient method for tracking flow fields

    Get PDF
    We present a method for tracking solar photospheric flows that is highly efficient, and demonstrate it using high resolution MDI continuum images. The method involves making a surface from the photospheric granulation data, and allowing many small floating tracers or balls to be moved around by the evolving granulation pattern. The results are tested against synthesised granulation with known flow fields and compared to the results produced by Local Correlation tracking (LCT). The results from this new method have similar accuracy to those produced by LCT. We also investigate the maximum spatial and temporal resolution of the velocity field that it is possible to extract, based on the statistical properties of the granulation data. We conclude that both methods produce results that are close to the maximum resolution possible from granulation data. The code runs very significantly faster than our similarly optimised LCT code, making real time applications on large data sets possible. The tracking method is not limited to photospheric flows, and will also work on any velocity field where there are visible moving features of known scale length

    Predation on invasive cane toads (Rhinella marina) by native Australian rodents

    Full text link
    © 2014, Springer-Verlag Berlin Heidelberg. The success of an invasive species can be reduced by biotic resistance from the native fauna. For example, an invader that is eaten by native predators is less likely to thrive than one that is invulnerable. The ability of invasive cane toads (Rhinella marina) to spread through Australia has been attributed to the toad’s potent defensive chemicals that can be fatal if ingested by native snakes, lizards, marsupials and crocodiles. However, several taxa of native insects and birds are resistant to cane toad toxins. If native rodents are also capable of eating toads (as suggested by anecdotal reports), these large, abundant and voracious predators might reduce toad numbers. Our field observations and laboratory trials confirm that native rodents (Melomys burtoni, Rattus colletti and Rattus tunneyi) readily kill and consume cane toads (especially small toads), and are not overtly affected by toad toxins. Captive rodents did not decrease their consumption of toads over successive trials, and ate toads even when alternative food types were available. In combination with anecdotal reports, our data suggest that rodents (both native and invasive) are predators of cane toads in Australia. Despite concerns about the decline of rodents following the invasion of toads, our data suggest that the species we studied are not threatened by toads as toxic prey, and no specific conservation actions are required to ensure their persistence

    Does mate guarding prevent rival mating in snow skinks? A test using AFLP

    Get PDF
    We report on likely mixed paternity in a natural population of snow skinks (Niveoscincus mirolepidoms) from alpine Tasmania, Australia. This species is nonterritorial and males guard females after copulation, Suggesting that guarding behavior has evolved to prevent rival mating of still-receptive females. To what degree does this mate-guarding prevent rival copulations? We sampled gravid females at random in the wild and looked for within-clutch mixed paternity among their offspring using amplified fragment length polymorphism (AFLP). Incorpating all visualized fragments, offspring band-sharing based on maternal bands was 0.94 (+/- 0.05, SD), whereas for paternal fragments it was 0.54 (+/- 0.46, SD). We then tested paternal band-sharing scores for all young of pairs against the mean score of the maternally inherited fragments to assess whether paternal genetic variation was larger than for a known single parent, hence, suggesting multiple sires. To reduce the risk of unequal sampling of polymorphic maternal and paternal fragments, We based Our statistical tests on heterozygous bands only. Offspring band sharing based on maternal heterozygous fragments was on average 0.68 ( +/- 0.22, SD), versus 0.35 (+/- 0.33, SD) based on paternally inherited fragments. in six of eight clutches (75%), at least one pair of voting in a clutch had paternal scores outside of the confidence interval for a single parent (i.e., the mother). Thus, mixed paternity seems to be widespread in this Population, despite prolonged postcopulatory mate-guarding by males

    Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    Get PDF
    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy�s extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to limited accessibility. However, the consistency and the adequacy of sampling and mixing at SRS could at least be studied under the controlled process conditions based on samples discussed by Ray and others [2012a] in Waste Form Qualification Report (WQR) Volume 2 and the transfers from Tanks 40H and 51H to the Sludge Receipt and Adjustment Tank (SRAT) within DWPF. It is important to realize that the need for sample representativeness becomes more stringent as the material gets closer to the melter, and the tanks within DWPF have been studied extensively to meet those needs

    Formation Process of a Light Bridge Revealed with the Hinode Solar Optical Telescope

    Full text link
    The Solar Optical Telescope (SOT) aboard HINODE successfully and continuously observed a formation process of a light bridge in a matured sunspot of the NOAA active region 10923 for several days with high spatial resolution. During its formation, many umbral dots were observed emerging from the leading edges of penumbral filaments, and intruding into the umbra rapidly. The precursor of the light bridge formation was also identified as the relatively slow inward motion of the umbral dots which emerged not near the penumbra, but inside the umbra. The spectro-polarimeter on SOT provided physical conditions in the photosphere around the umbral dots and the light bridges. We found the light bridges and the umbral dots had significantly weaker magnetic fields associated with upflows relative to the core of the umbra, which implies that there was hot gas with weak field strength penetrating from subphotosphere to near the visible surface inside those structures. There needs to be a mechanism to drive the inward motion of the hot gas along the light bridges. We suggest that the emergence and the inward motion are triggered by a buoyant penumbral flux tube as well as the subphotospheric flow crossing the sunspot.Comment: 8 pages, 6 figures, accepted in the PASJ Hinode special issu

    Flare Ribbons Observed with G-band and FeI 6302A Filters of the Solar Optical Telescope on Board Hinode

    Full text link
    The Solar Optical Telescope (SOT) on board Hinode satellite observed an X3.4 class flare on 2006 December 13. Typical two-ribbon structure was observed, not only in the chromospheric CaII H line but also in G-band and FeI 6302A line. The high-resolution, seeing-free images achieved by SOT revealed, for the first time, the sub-arcsec fine structures of the "white light" flare. The G-band flare ribbons on sunspot umbrae showed a sharp leading edge followed by a diffuse inside, as well as previously known core-halo structure. The underlying structures such as umbral dots, penumbral filaments and granules were visible in the flare ribbons. Assuming that the sharp leading edge was directly heated by particle beam and the diffuse parts were heated by radiative back-warming, we estimate the depth of the diffuse flare emission using the intensity profile of the flare ribbon. We found that the depth of the diffuse emission is about 100 km or less from the height of the source of radiative back-warming. The flare ribbons were also visible in the Stokes-V images of FeI 6302A, as a transient polarity reversal. This is probably related to "magnetic transient" reported in the literature. The intensity increase in Stokes-I images indicates that the FeI 6302A line was significantly deformed by the flare, which may cause such a magnetic transient.Comment: 14 pages, 7 figures, PASJ in pres
    corecore