21 research outputs found

    Activin E Controls Energy Homeostasis in Both Brown and White Adipose Tissues as a Hepatokine

    Get PDF
    Brown adipocyte activation or beige adipocyte emergence in white adipose tissue (WAT) increases energy expenditure, leading to a reduction in body fat mass and improved glucose metabolism. We found that activin E functions as a hepatokine that enhances thermogenesis in response to cold exposure through beige adipocyte emergence in inguinal WAT (ingWAT). Hepatic activin E overexpression activated thermogenesis through Ucp1 upregulation in ingWAT and other adipose tissues including interscapular brown adipose tissue and mesenteric WAT. Hepatic activin E-transgenic mice exhibited improved insulin sensitivity. Inhibin βE gene silencing inhibited cold-induced Ucp1 induction in ingWAT. Furthermore, in vitro experiments suggested that activin E directly stimulated expression of Ucp1 and Fgf21, which was mediated by transforming growth factor-β or activin type I receptors. We uncovered a function of activin E to stimulate energy expenditure through brown and beige adipocyte activation, suggesting a possible preventive or therapeutic target for obesity

    Development of Curators’ Attitudes towards Education through an Interview Research

    Get PDF
    Recently, as art museums are being focused as a learning place, curators are expected to encourage these Learning activities. This paper aims to clarify how curators are developing their attitudes on education in their daily practice, through an interview research.  After describing aims and methods of this paper in chapter 1 and 2, chapter 3 examines the following results of interview research. 1. Why they came to have interests in education, 2. How they are developing knowledge and methods on education. 3. The factors that influence their practice. 4. Guiding philosophy for their own education program, 5. Worries and restrictions. 6. Relationship with school.  These examinations show that curators are developing their knowledge and methods on education through trial and error effected by various factors; other museums, schools, visitors, colleagues, and by the reflection on their own practice

    Effects of Five Amino Acids (Serine, Alanine, Glutamate, Aspartate, and Tyrosine) on Mental Health in Healthy Office Workers: A Randomized, Double-Blind, Placebo-Controlled Exploratory Trial

    No full text
    Background: The importance of maintaining good mental health with overall well-being has recently drawn attention from various spheres of academics and the working population. Amino acid intake has been reported to reduce depression symptoms and other mental health problems. However, the effectiveness of amino acid intake (i.e., single or combined) remains unknown. In this study, we assessed a combination of five amino acids (serine, alanine, glutamate, aspartate, and tyrosine; SAGAT) reported to regulate mental health. Methods: A randomized, double-blind, placebo-controlled exploratory trial was conducted. Participants, aged between 20 and 65 years with fatigue sensation, were randomized to receive either SAGAT or the placebo and ingested them for four weeks. A transient mental work was loaded at day 0 and after four weeks of intervention. As the primary outcomes, the fatigue sensation was assessed. The mood status, cognitive function, work efficiency, and blood marker were also measured as secondary outcomes. Results: The number of participants analyzed for the efficacy evaluation were 20 in SAGAT and 22 in the placebo. There were no significant differences in the primary outcomes. However, as the secondary outcomes, the SAGAT group showed a significant improvement in motivation and cognitive function in the recovery period after mental work loaded in a four-week intervention compared to the placebo. Conclusion: The current findings suggest that SAGAT contributes to maintaining proper motivation and cognitive function. Clinical Trial Registration: University Hospital Medical Information Network Clinical Trial Registry (ID: UMIN 000041221)

    Inhibition of HDAC and Signal Transduction Pathways Induces Tight Junctions and Promotes Differentiation in p63-Positive Salivary Duct Adenocarcinoma

    No full text
    Background: The p53 family p63 is essential for the proliferation and differentiation of various epithelial basal cells. It is overexpressed in several cancers, including salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. Methods: In the present study, to investigate the roles and regulation of p63 in salivary duct adenocarcinoma (SDC), human SDC cell line A253 was transfected with siRNA-p63 or treated with the HDAC inhibitors trichostatin A (TSA) and quisinostat (JNJ-26481585). Results: In a DNA array, the knockdown of p63 markedly induced mRNAs of the tight junction (TJ) proteins cingulin (CGN) and zonula occuludin-3 (ZO-3). The knockdown of p63 resulted in the recruitment of the TJ proteins, the angulin-1/lipolysis-stimulated lipoprotein receptor (LSR), occludin (OCLN), CGN, and ZO-3 at the membranes, preventing cell proliferation, and leading to increased cell metabolism. Treatment with HDAC inhibitors downregulated the expression of p63, induced TJ structures, recruited the TJ proteins, increased the epithelial barrier function, and prevented cell proliferation and migration. Conclusions: p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways is, therefore, useful in therapy for p63-positive SDC cells

    Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism

    No full text
    <div><p>It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.</p></div

    Activin E Controls Energy Homeostasis in Both Brown and White Adipose Tissues as a Hepatokine

    Get PDF
    アクチビンEが脂肪燃焼細胞の増加を促進することを解明 --肥満解消の新たなプレイヤーを発見--. 京都大学プレスリリース. 2018-11-02.Brown adipocyte activation or beige adipocyte emergence in white adipose tissue (WAT) increases energy expenditure, leading to a reduction in body fat mass and improved glucose metabolism. We found that activin E functions as a hepatokine that enhances thermogenesis in response to cold exposure through beige adipocyte emergence in inguinal WAT (ingWAT). Hepatic activin E overexpression activated thermogenesis through Ucp1 upregulation in ingWAT and other adipose tissues including interscapular brown adipose tissue and mesenteric WAT. Hepatic activin E-transgenic mice exhibited improved insulin sensitivity. Inhibin βE gene silencing inhibited cold-induced Ucp1 induction in ingWAT. Furthermore, in vitro experiments suggested that activin E directly stimulated expression of Ucp1 and Fgf21, which was mediated by transforming growth factor-β or activin type I receptors. We uncovered a function of activin E to stimulate energy expenditure through brown and beige adipocyte activation, suggesting a possible preventive or therapeutic target for obesity
    corecore