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SUMMARY

Brown adipocyte activation or beige adipocyte emer-
gence in white adipose tissue (WAT) increases en-
ergy expenditure, leading to a reduction in body fat
mass and improved glucose metabolism. We found
that activin E functions as a hepatokine that en-
hances thermogenesis in response to cold exposure
through beige adipocyte emergence in inguinal WAT
(ingWAT). Hepatic activin E overexpression activated
thermogenesis through Ucp1 upregulation in in-
gWAT and other adipose tissues including interscap-
ular brown adipose tissue and mesenteric WAT. He-
patic activin E-transgenic mice exhibited improved
insulin sensitivity. Inhibin bE gene silencing inhibited
cold-induced Ucp1 induction in ingWAT. Further-
more, in vitro experiments suggested that activin
E directly stimulated expression of Ucp1 and
Fgf21, which was mediated by transforming growth
factor-b or activin type I receptors. We uncovered a
function of activin E to stimulate energy expenditure
through brown and beige adipocyte activation, sug-
gesting a possible preventive or therapeutic target
for obesity.

INTRODUCTION

Adipose tissue plays a vital role in regulation of whole-body en-

ergymetabolism.White adipose tissue (WAT) functions as an en-

ergy storage depot, whereas brown adipose tissue (BAT) is an

energy dissipation depot. White adipocytes have a unilocular

lipid droplet, and brown adipocytes are characterized by multi-
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locular lipid droplets, densely packed mitochondria, and unique

expression of uncoupling protein 1 (Ucp1). Ucp1 enables energy

to dissipate as heat by uncoupling oxidative phosphorylation

with ATP production (Cannon andNedergaard, 2004). In addition

to classical brown adipocytes (Seale et al., 2008; Lepper and Fan

2010), distinct Ucp1-positive adipocytes, so-called beige adipo-

cytes, can be induced sporadically within WAT upon cold expo-

sure (Vitali et al., 2012).

Adaptations to the cold are predominantly controlled by

sympathetic nerves. Norepinephrine secreted by sympathetic

nerves activates brown and beige adipocytes via b-adrenergic

receptors, resulting in acceleration of lipolysis and upregulation

of Ucp1 expression (Cousin et al., 1992; Wu et al., 2012).

Although activation of brown and beige adipocytes may be a

promising strategy against obesity, pharmacological activation

of the sympathetic nervous system is not considered as a poten-

tial therapy because of strong side effects on the cardiovascular

system (Yen and Ewald, 2012). Thus, identification of non-sym-

pathetic regulators of brown and beige adipocyte activity has

attracted great interest (Cereijo et al., 2015). Several factors,

such as Fgf21, Bmp8b, and Irisin, have been shown to regulate

brown and beige adipogenesis and activation of brown and

beige adipocytes (Harms and Seale 2013).

Activin E, a secreted peptide encoded by the inhibin bE gene

(Inhbe), is a member of the transforming growth factor-b (TGF-b)

superfamily, which is predominantly expressed in the liver (Fang

et al., 1997; Hashimoto et al., 2002). Activin E has been reported

to inhibit proliferation of hepatocytes in vitro (Vejda et al., 2003;

Wada et al., 2005) and in vivo (Chabicovsky et al., 2003). How-

ever, the effect is relatively small, and the physiological role

of activin E has not been well defined (Lau et al., 2000). Here,

we demonstrate that activin E is a peptide that activates

the thermogenic program in adipose tissues and improves

insulin sensitivity. We show that transgenic mice expressing
ports 25, 1193–1203, October 30, 2018 ª 2018 The Authors. 1193
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Figure 1. Body Weight and Glucose Meta-

bolism of Liver-Specific Activin E-Overex-

pressing Mice

(A) Growth curve of Alb-ActE mice fed the control

diet. Body weights of control and Alb-ActE mice

were measured weekly from week 4 to 52. Values

are the mean ± SEM. n = 11–14 in each group.

(B) Relative percentage of lean body weight to

body weight of male Alb-ActE mice at 18–

24 weeks of age fed the control diet. n = 6 in each

group.

(C) Food intake of Alb-ActE mice at 16–21 weeks

of age. n = 9–14 in each group.

(D) Growth curve of male Alb-ActE mice fed the

high-fat diet. Body weights of control and Alb-

ActE mice were measured weekly from week 4 to

17. Values are the mean ± SEM. n = 6 in each

group.

(E) Lean body weight of Alb-ActEmice at 18weeks

of age fed the high-fat diet. n = 6 in each group.

(F) Adipose tissue weight in Alb-ActE mice. Rela-

tive tissue weight is expressed as the percentage

of total body weight. Results are shown as

means ± SEM. *p < 0.05 and **p < 0.01. n = 6 in

each group.

(G) Blood glucose levels of mice (11–12 weeks old)

fasted for 4 hr. n = 11 or 12.

(H and I) Glucose tolerance tests in Alb-ActE mice

at 10–11 weeks of age. Blood glucose (H) and in-

sulin (I) concentrations were measured at the

indicated times. n = 9 or 10 in each group.

(J) Insulin tolerance tests in Alb-ActE mice at 11–

12 weeks of age. Alb-ActE mice, liver-specific

activin E-overexpressing mice. n = 9 or 10 in each

group. Values are themean ± SEM. *p < 0.05, **p <

0.01, and ***p < 0.001.
activin E in their liver exhibit induced emergence of beige

adipocytes and activated brown adipocytes. As a result,

thermogenesis is stimulated, leading to improvement of insulin

sensitivity. Consistent with these results, targeted disruption of

the inhibin or activin bE gene inhibited cold-induced thermogen-

esis and diet-induced obesity. We propose that activin E is a

potential candidate for prevention or therapeutic intervention of

obesity.

RESULTS

Improvement of Insulin Sensitivity in Transgenic Mice
Overexpressing Hepatic Activin E
Previous reports have described fluctuation of activin E (Inhbe)

mRNA expression in the rodent liver according to the nutritional

status such as fasting, feeding, or chronic high calorie intake

(Rodgarkia-Dara et al., 2006; Hashimoto et al., 2009). We

confirmed the enhanced hepatic Inhbe mRNA level in mice fed a
1194 Cell Reports 25, 1193–1203, October 30, 2018
high-fat diet for 2 weeks (Figure S1A). In

addition, InhbemRNA was predominantly

expressed in the liver (Figure S1B). These

findings prompted us to form the hypothe-

sis thatactivinEmayalso functionasahor-

mone that regulates energy homeostasis.
To examine the involvement of activin E in regulation of meta-

bolic pathways, we generated transgenic mice overexpressing

activin E in their liver under the control of the albumin promoter

(Alb-ActE mice; Figures S2A–S2F). Compared with control

mice, body weight gain was less in Alb-ActE mice (Figure 1A).

The reduction of body weight gain did not result from a decrease

in lean body mass (Figure 1B). In addition, daily food intake was

not affected in Alb-ActE mice (Figure 1C). When mice were fed

the high-fat diet, Alb-ActE mice exhibited partial resistance to

diet-induced obesity (Figure 1D) without affecting their lean

body mass (Figure 1E). Moreover, the epididymal WAT (epiWAT)

weight was significantly decreased in Alb-ActE mice fed the

high-fat diet (Figure 1F).

We next evaluated glucose metabolism in Alb-ActE mice. Alb-

ActE mice showed a marked decrease in their plasma glucose

level compared with control mice (Figure 1G). A glucose toler-

ance test indicated that the plasma glucose level was signifi-

cantly lower in Alb-ActE mice compared with the control group
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Figure 2. Energy Metabolism of Alb-ActE Mice

(A–D) Oxygen consumption (A), respiratory exchange ratio (B), carbohydrate oxidation (C), and lipid oxidation (D) of Alb-ActE mice at 9–11 weeks of age (n = 8).

Data on oxygen consumption and oxidation of carbohydrate and lipid are shown as milliliters per minute per kilogram of total body weight.

(E and F) Locomotion of 14-week-old Alb-ActE mice (n = 4) (E) and rectal temperature of Alb-ActE mice at 29–34 weeks of age measured during the light phase

(n = 9–14) (F). CHO, carbohydrates. Values are means ± SEM. *p < 0.05.
before and after glucose challenge (Figure 1H). Estimation of the

area under curve was also lower in Alb-ActE mice (control

mice, 8.88 ± 0.32; Alb-ActE mice, 7.30 ± 0.17; p < 0.001).

Plasma insulin levels were comparable between the groups,

suggesting that the decrease in the plasma glucose level was

not due to an increase of insulin secretion (Figure 1I). An insulin

tolerance test indicated that the decrease in the plasma

glucose level was more remarkable in Alb-ActE mice than in

control mice after insulin challenge (Figure 1J), suggesting

that activin E has a function to enhance insulin sensitivity.

Overexpression of hepatic activin E did not affect serum levels

of triglycerides, aspartate aminotransferase (AST), and alanine

aminotransferase (ALT), or the relative weights of organs

such as the liver, pancreas, kidney, heart, and testis (Figures

S2G–S2J). In addition, histological analysis indicated that

Alb-ActE mice did not exhibit any pathological abnormalities

(Figure S3).

Activation of Fat Metabolism by Overexpression of
Hepatic Activin E
To investigate the metabolic consequences of activin E overex-

pression, we subjected Alb-ActE mice to indirect calorimetry.

Simultaneous measurements of oxygen consumption and car-

bon dioxide production allow determination of the respiratory

quotient (RQ) that reflects the carbohydrate and fat oxidation

ratio unless protein metabolism is altered substantially. The vol-

ume of oxygen consumed by Alb-ActE mice was higher than that
by control mice during the light phase (Figure 2A). In contrast, the

RQ during the light phase was lower in Alb-ActE mice than in

control mice (Figure 2B). These measurements revealed that

the amount of oxidized carbohydrate was not different between

these mice. However, lipid oxidation was enhanced in Alb-

ActE mice during the light phase compared with control mice

(Figures 2C and 2D). Differential body weight was not respon-

sible for the results; analysis of covariance (ANCOVA) analysis

(Tschöp et al., 2011) with genotype and body weight as factors

of raw data indicated similar tendency on genotype effect

(Figures S2K–S2N). We found no marked differences in locomo-

tive activity between these mice (Figure 2E). The results sug-

gested that the improved insulin sensitivity in Alb-ActE mice

was related to increased energy expenditure during sleep,

particularly by activation of lipid oxidation. Furthermore, the

rectal temperature was higher in Alb-ActE mice compared with

control mice (Figure 2F).

Activation of BrownAdipocytes andEmergence of Beige
Adipocytes in Alb-ActE Mice
The above results raised the possibility that the increase in en-

ergy expenditure was due to enhanced heat production by

brown adipocytes, beige adipocytes, or both. Thus, we charac-

terized adipose tissues in Alb-ActE mice. The relative weight of

interscapular BAT (iBAT) was decreased (Figure 3A), and the

brown adipocyte size was slightly increased compared with con-

trol mice (Figures 3B and 3C). Immunoblot analysis indicated
Cell Reports 25, 1193–1203, October 30, 2018 1195
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Figure 3. Characteristics of iBAT in Alb-ActE Mice

(A) iBAT weight in Alb-ActEmice. Relative tissue weight is expressed as a percentage of total body weight. Results are shown asmeans ± SEM. *p < 0.05. n = 4 in

each group (18–24 weeks of age).

(B) Histological analysis of iBAT in Alb-ActEmice (18 weeks of age). Adipose tissue sections were stained with H&E. Representative data are shown. Bar, 100 mm.

(C) Distribution of the cell size in iBAT of Alb-ActE mice. Tissue sections were stained with H&E. The adipocyte size in arbitrary fields of view was analyzed by

ImageJ. Results are shown as means ± SEM. *p < 0.05. n = 4 in each group (18–24 weeks of age).

(D) Western blot analysis of UCP1 expression in iBAT of Alb-ActE mice (12 weeks of age). iBAT was lysed with RIPA buffer and subjected to western blotting.

Representative data are shown.

(E) Densitometric values for UCP1 expression in E. Data represent means ± SEM. *p < 0.05. n = 4 in each group.

(F) Fluorescence staining of mitochondria in iBAT from Alb-ActE mice (18 weeks of age). iBAT sections were reacted with MitoTracker. Fluorescent signals were

observed using a fluorescence microscope. Representative data are shown. Bar, 100 mm.

(G) Gene expression of brown adipocyte-specific genes in iBAT of Alb-ActEmice. iBATmRNA from themice was subjected to RT-qPCR. Expression of the genes

was normalized to that of Hprt1. The expression level in control micewas set at 1. Data are shown as themean ±SEM. *p < 0.05 and **p < 0.01. n = 4 in each group

(24–27 weeks of age).
stronger expression of Ucp1 in iBAT of Alb-ActEmice than in that

of control mice (Figures 3D and 3E). Staining of brown adipo-

cytes with MitoTracker, a mitochondrion-specific dye, revealed

an increase in the number of mitochondria (Figure 3F). In addi-

tion, expression of genes related to brown and beige adipocytes

was generally increased in iBAT of Alb-ActEmice compared with

that of control mice (Figure 3F). In particular, expression of Fgf21

and Bmp8b was significantly higher in Alb-ActE mice than in

control mice (Figure 3G). These molecules stimulate activation

of brown and beige adipocytes (Fisher et al., 2012; Whittle

et al., 2012).

We also characterizedWAT of Alb-ActE mice. Overexpression

of hepatic activin E decreased the relative weight of WAT

compared with control mice (Figure 4A). The weight of mesen-

teric WAT (mesWAT) was also significantly lower. Histological
1196 Cell Reports 25, 1193–1203, October 30, 2018
analysis revealed an increase in the occurrence of multiple lipid

droplets and acidophilic adipocytes, especially in inguinal WAT

(ingWAT) and mesWAT, but not in epiWAT (Figures 4B–4D). A

significant reduction of the adipocyte size was also apparent in

ingWAT and mesWAT, while the percentage of large adipocytes

(>8,000 mm2) was higher in epiWAT of Alb-ActE mice (Figure S4).

Immunohistochemical analysis showed induction of Ucp1-posi-

tive multilocular adipocytes among white adipocytes in ingWAT

and mesWAT of Alb-ActE mice (Figures 4E and 4F). The mito-

chondrial density was also increased in these WATs of Alb-

ActE mice compared with control mice (Figures 4E and 4F).

These results suggested that overexpression of activin E in the

liver stimulated the emergence of beige adipocytes in ingWAT

and mesWAT. In fact, significant upregulation of Ucp1 ex-

pression was detected in ingWAT and mesWAT of Alb-ActE
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Figure 4. Characteristics of WAT in Alb-ActE Mice

(A) Adipose tissue weight in Alb-ActE mice. Relative tissue weight is expressed as a percentage of total body weight. Results are shown as means ± SEM.

**p < 0.01. n = 4 in each group (18–24 weeks of age).

(B–D) H&E staining of WAT sections from the mice. (B) ingWAT, (C) mesWAT, (D) epiWAT. Representative data are shown. Bars, 100 mm.

(E and F) Fluorescence staining of UCP1 and mitochondria in ingWAT and mesWAT of Alb-ActE mice. WAT sections from mice (18 weeks of age) were reacted

with MitoTracker and an anti-UCP1 antibody, and then incubated with a fluorescence-labeled second antibody. Fluorescent signals were observed using a

fluorescence microscope. Representative data are shown. (E) ingWAT. (F) mesWAT. Bars, 50 mm. ing, inguinal; mes, mesenteric; epi, epididymal.
mice (Figure 5A). Unexpectedly, no significant differences were

observed in expression of other genes with higher expression

in brown and beige adipocytes than in white adipocytes (Seale

et al., 2008; Wu et al., 2012), except for Prdm16 in mesWAT (Fig-

ures 5B–5I). Furthermore, Fgf21 expression was upregulated in

ingWAT and epiWAT of Alb-ActE mice (Figure 5J). In contrast,

hepatic expression of Fgf21 was decreased in Alb-ActE mice

(Figure S5A). Serum Fgf21 concentrations were comparable in

control and Alb-ActE mice (Figure S5B). We also measured the

serum level of norepinephrine and expression level of Adrb3 in

adipose tissues to evaluate sympathetic nerve activity (Fig-

ure S5). Overexpression of hepatic activin E did not affect the

serum norepinephrine level (Figure S5C) or expression level of

Adrb3 in ingWAT and mesWAT (Figure S5D). Furthermore, the

expression level of Adrb3 was higher in iBAT and lower in

epiWAT.
Cold Intolerance through Less Emergence of
Beige Adipocytes and Thermogenesis in Activin
E-Knockout Mice
To determine the physiological role of activin E, we generated

inhibin bE-ablated mice (Figures S6A–S6E). Targeted disruption

of the inhibin bE gene did not affect the body weight, rectal

temperature, plasma glucose, glucose and insulin tolerance,

liver functions, or food intake of activin E-knockout (ActE-KO)

mice at room temperature (22�C) (Figures S6F–S6M). In addition,

the relative weights of iBAT, ingWAT, mesWAT, and epiWAT

were comparable between wild-type and ActE-KO mice (Fig-

ure S7A). Histologically, there was no significant difference in

their adipose tissues (Figure S7B). The expression level of

Ucp1 in ingWAT of wild-type mice was significantly lower than

that in ingWAT of ActE-KO mice (Figure 6A). Unlike Alb-ActE

mice, knockout of the Inhbe gene did not affect expression levels
Cell Reports 25, 1193–1203, October 30, 2018 1197
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Figure 5. Expression of Brown Adipocyte-Specific Genes in WAT of Alb-ActE Mice

(A–J) mRNA fromWAT ofmice at 24–27 weeks of age was subjected to RT-qPCR.mRNA expression ofUcp1 (A), Pgc1a (B), Pgc1b (C),Cox7a (D),Cidea (E),Dio 2

(F), Cyc1 (G), Tfam (H), Prdm16 (I), Fgf21 (J) in the WAT. Expression of the genes was normalized to that of Tbp. The expression level in control mice was set at 1.

Data are shown as the mean ± SEM. *p < 0.05. n = 4 in each group. ing, inguinal; mes, mesenteric; epi, epididymal.
of Fgf21 or Bmp8b in iBAT (Figure 6B). However, Fgf21 expres-

sion was significantly lower in ingWAT of ActE-KO mice

compared with that of wild-type mice (Figure 6C). Additionally,

hepatic Fgf21 expression tended to be higher in ActE-KO

mice than in wild-type mice (Figure S7C), and serum Fgf21

levels were comparable in wild-type and ActE-KO mice

(Figure S7D).

We next investigated adaptive thermogenesis during acute

cold exposure in ActE-KOmice. Cold exposure at 4�C for 6 hr re-

sulted in a significant reduction of rectal temperature in ActE-KO

mice (Figure 6D). Emergence of beige adipocytes occurs within

6 hr after cold exposure (Dempersmier et al., 2015). We also

observed rapid induction of beige adipocytes, and targeted

disruption of the inhibin bE gene blocked the emergence of

Ucp1-positive beige adipocytes induced by cold exposure (Fig-

ure 6E). These results suggest that activin E is required for induc-

tion of beige adipocytes and thermogenesis in response to cold

exposure.

Activin E Directly Stimulates Differentiation of Brown
Preadipocytes
We further explored themechanism underlyingmodulation of the

emergence of beige adipocytes related to the expression level of
1198 Cell Reports 25, 1193–1203, October 30, 2018
activin E. To this end, we performed in vitro experiments using

iBPA cells, immortalized preadipocytes from mouse iBAT. Dur-

ing brown adipogenesis, cells were treated with or without

conditioned medium (CM) from activin E-expressing cells (CM-

ActE) or CM from cells transfected with the empty vector (CM-

control). We attempted to prepare recombinant activin E protein

using Chinese hamster ovary (CHO) cells. Unfortunately, during

the purification step, activin E protein was lost by non-specific

adsorption to the high-performance liquid chromatography col-

umn, and an insufficient amount of recombinant activin E was

obtained. Expression levels of Ucp1 and Cidea were increased

at 10 hr after treatment with CM-ActE (Figures 7A and 7B). The

CM-ActE also increased expression of Fgf21 (Figure 7C). The

upregulation of Ucp1, Cidea, and Fgf21 expression was blocked

by cotreatment with SB431542, an inhibitor of TGF-b or activin

type I receptors (Callahan et al., 2002), but not with inhibitors

of other signaling pathways (Figures 7D–7F).

DISCUSSION

Since functional brown and beige adipocytes were identified

in adult humans, activation of brown and beige adipocytes

has been suggested to be potentially helpful for prevention or
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Figure 6. Impaired Thermogenesis through Less Emergence of Beige Adipocytes in ActE-KO Mice

(A) Ucp1 gene expression in adipose tissues of mice.

(B and C) Expression of Fgf21 and Bmp8b in iBAT (B) and expression of brown adipocyte-selective genes in ingWAT (C) were examined by RT-qPCR. Expression

of the genes was normalized to that of Tbp. The expression level in control mice was set at 1. Data are shown as themean ±SEM. **p < 0.01 and ***p < 0.005.Mice

at 11–15 weeks of age were analyzed. n = 4 in each group. ing, inguinal; mes, mesenteric; epi, epididymal.

(D) Rectal temperature of ActE-KO mice exposed to 4�C. Mice at 14–34 weeks of age were analyzed. Data are shown as the mean ± SEM. **p < 0.01. n = 5–11.

(E) Fluorescence staining of UCP1 and mitochondria in ingWAT from cold-challenged ActE-KO mice. ingWAT sections from mice (14 weeks of age) exposed to

4�C for 6 hr were reacted with MitoTracker and an anti-UCP1 antibody, and then incubated with a fluorescence-labeled second antibody. Fluorescent signals

were observed using a fluorescence microscope. Representative data are shown. Bar, 50 mm.
therapeutic intervention of obesity (Stanford et al., 2013). The

present study indicates that (1) activin E is required for cold-

induced thermogenesis through induction of beige adipocytes

in ingWAT, (2) overexpression of activin E enhances thermogen-

esis and insulin sensitivity through stimulation of brown adipo-

cyte activity in iBAT as well as induction of beige adipocytes in

ingWAT and mesWAT, (3) the expression level of activin E is

closely related to that of Fgf21 in ingWAT, and (4) activin E en-

hances expression ofUcp1 and Fgf21 in cultured brown (pre)ad-

ipocytes. The present results uncovered a role of activin E as a

hepatokine in regulation of energy metabolism through activa-

tion of brown and beige adipocytes.

Expression of Ucp1 and Fgf21 was increased in iBAT and in-

gWAT of activin E-transgenic mice, whereas their expression

was decreased in ingWAT, but not iBAT, of ActE-KO mice.

Owen et al. (2014) reported that FGF21 stimulates sympathetic

nerve activity, leading to an increase in energy expenditure and

weight loss in mice. In this study, plasma norepinephrine con-

centrations were not affected by the expression level of activin

E. Furthermore, the serum FGF21 level was unaffected by the

expression level of activin E resulting from the opposite effects
of Fgf21 expression in adipose tissues and the liver. Activin

E-induced modulation of thermogenesis is unlikely to be medi-

ated through activation of sympathetic nerve activity induced

by increased production of FGF21. Nevertheless, in view of

altered expression of Adrb3 in iBAT and epiWAT of Alb-ActE

mice, the activin E is likely to modulate signaling activity of

norepinephrine depending on the fat depot.

Previous studies have shown that pharmacological FGF21 in-

duces the emergence of Ucp1-positive adipocytes and in-

creases beige adipocyte-related gene expression in ingWAT

(Fisher et al., 2012). In addition, FGF21 increases expression

levels of brown and beige adipocyte-selective genes including

Ucp1 in cultured brown and beige adipocytes (Fisher et al.,

2012). Treatment with FGF21 during adipogenesis also stimu-

lates Ucp1 expression and oxygen consumption in human adi-

pocytes (Lee et al., 2014). These results indicate direct effects

of FGF21 in adipose tissues. Therefore, modulation of thermo-

genesis related to the activin E status is likely to be mediated

through regulatory expression of adipose FGF21. In fact, activin

E directly stimulated brown adipogenesis and expression of

Fgf21 in the in vitro experiments.
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Figure 7. Activin E Regulates Expression of Ucp1, Cidea, and Fgf21 via TGF-b or Activin Type I Receptors in Brown (Pre)adipocytes

(A–F) iBPA cells were induced to differentiate into brown adipocytes. Four days after the induction of differentiation, cells were treated with CM-ActE or CM-

control for the indicated times (A–C) or for 24 hr in the presence of the indicated inhibitor (D–F). Expression levels of Ucp1 (A and D), Cidea (B and E), and Fgf21

(C and F) were examined by RT-qPCR. Expression of the genes was normalized to that of Gapdh. The expression level in cells treated with CM-control for 1 hr

(A–C) or with CM-control in the presence of the vehicle (D–F) was set at 1. Data are shown as themean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001. n = 3 in each

group. Ve, Vehicle; SB, SB431542; LDN, LDN193189; U, U0126.
Overexpression of activin E in Alb-ActE mice induced expres-

sion of Ucp1 in not only ingWAT but also other fat depots

including iBAT and mesWAT, whereas the inability to induce

Ucp1 expression was limited to ingWAT in ActE-KO mice.

Although the reason why the affected fat depots were different

between Alb-ActE and ActE-KO mice is unclear, the high blood

flow rate in iBAT (Cannon and Nedergaard, 2004) likely enables

an efficient response to the increase in the plasma activin E level

of Alb-ActEmice. In addition, upregulation ofUcp1 expression in

iBAT of Alb-ActE micemay be related to increased expression of

Bmp8b, because changes in the expression level of Bmp8b in

iBAT paralleled those of Ucp1. A previous study has shown

involvement of Bmp8b in activation of brown adipocytes (Whittle

et al., 2012).

Our in vitro experiments indicated that activin E-inducedUcp1

and Fgf21 expression was suppressed by inhibition of TGF-b or

activin type I receptors, i.e., Alk4, Alk5, and Alk7, but not Bmp

type I receptors, i.e., Alk2, Alk3, and Alk6. Members of the

TGF-b family signal via complex formation with specific recep-

tors including type I and type II receptors (Budi et al., 2017). At

present, receptors to confer activin E signals are unclear.

Proteomic analysis has indicated that activin E forms a complex
1200 Cell Reports 25, 1193–1203, October 30, 2018
with Actr2b, an activin and Bmp type II receptor (Souza et al.,

2008). Thus, it is possible that activin E signals via Alk4, Alk5,

or Alk7 as a type I receptor and Actr2b as a type II receptor.

Considering that Alk7 expression increases with progression of

adipogenesis (Kogame et al., 2006), Alk7 may be a putative re-

ceptor for activin E.

The expression level of hepatic activin E is modulated in

response to changes in the energy status. Inhibin bE mRNA in-

creases by consuming a high-fat diet (Hashimoto et al., 2009).

In addition, activin E expression is actively regulated within a

day. The expression level of activin E increases gradually

before a meal and rapidly decreases after refeeding of food-

restricted rats exposed to time-scheduled feeding (Rodgar-

kia-Dara et al., 2006). Considering that beige adipocytes

emerged rapidly in ingWAT in response to cold exposure

(�6 hr), and that induction of the inguinal Ucp1 gene was

less in ActE-KO mice, activin E may be involved in fine-tuning

of thermogenesis induced by cold exposure. Considering the

physiological role of activin E as shown by the gene-silenced

mice and the pharmacological effect of activin E as shown by

the transgenic mice, activin E may be a therapeutic target for

obesity.



Recently, Sugiyama et al. (2018) reported that hepatic activin E

may act as a putative candidate that alters whole-body energy

metabolism under obese insulin-resistant conditions. Hepatic

INHBEmRNA levels were positively correlated with insulin resis-

tance in humans, and downregulation of Inhbe expression by in-

jection of siRNA against Inhbe decreased fat mass through

increased lipid utilization in db/db diabetic mice. These results

suggest that activin E is a putative factor to induce insulin resis-

tance, which contradicts the results shown in this study. At pre-

sent, the reason for the inconsistent results is unknown, and

future studies are needed to clarify the role of the hepatokine

activin E.

EXPERIMENTAL PROCEDURES

Materials

The pCALNL5 vector (Kanegae et al., 1995), a Cre/loxP expression plasmid,

was constructed by Dr. Izumu Saito (University of Tokyo) and provided by

the RIKEN BioResource Center (Tsukuba, Japan). The anti-activin E antibody

was prepared as described previously (Hashimoto et al., 2006). The anti-Ucp1

antibody was purchased from Abcam (Cambridge, UK; 2.5 mg/mL; catalog

#ab10983, RRID:AB_2241462). Mice bearing the serum albumin gene pro-

moter and enhancer-driven Cre recombinase (Alb-Cre) transgene (B6.Cg-Tg

[Alb-cre]21Mgn/J) were purchased from The Jackson Laboratory (IMSR cata-

log #JAX:003574, RRID:IMSR_JAX:003574).

Generation of Transgenic Mice Overexpressing Hepatic Activin E

and ActE-KO Mice

Transgenic mice carrying a flox-stopped mouse activin E transgene

(mActEflox) were generated using a Cre/loxP expression plasmid constructed

with the pCALNL5 vector (Figure S2A) as described previously (McMahon

et al., 2008). Mouse inhibin bE cDNA (mActE, NM_008382) was amplified

by RT-PCR from mouse liver using primers 50-TGCGAATTCACCTG

GAGCATGAAACTTCCAAAAGCCCAG-30 and 50-TTAGGTACCCTAGCTGCA

GCCACAGGCCTCTACTAC-30, and inserted into the multi-cloning site of the

vector. After confirmation of the mActE DNA sequence, the resulting vector

was designated as pCALNL5-mActE.

The transgene was isolated by digestion with SalI and HindIII from

pCALNL5-mActE, followed by agarose gel extraction. Microinjection of the

linearized transgene into pronuclei of fertilized eggs from C57BL/6J mice per-

formed by CLEA Japan (Transgenic Core; Tokyo, Japan) resulted in the pro-

duction of mice that were determined to be transgenic by PCR genotyping

using primers E1 (50-TAGCCAAGCAGCAAATCCTGGA-30) and E2 (50-CTTT
GAGGAGGCTGAAGACG-30).
The founder mice (lines 2, 8, 25, and 28) were bred with C57BL/6J mice

(CLEA Japan) to establish strains of mActEflox-transgenic mice (C57BL/6J-

Tg[CAG-floxed INHBE] Ohm).

Genotyping of each mouse revealed that four of these mice transmitted the

transgene through the germline, as established by PCR genotyping. Lines 2, 8,

and 25 of mActEflox-transgenic mice did not reproduce well.

To examine the effect of activin E overexpression exclusively in the liver, fe-

male (line 28, IMSR catalog #RBRC04019, RRID:IMSR_RBRC04019) mice

heterozygous for the mActEflox transgene were crossed with male mice homo-

zygous for the Alb-Cre transgene to generate mice heterozygous for both

mActE and Alb-Cre transgenes.

PCR analysis to detect both the floxed (2,055 bp) and recombined (1,105 bp)

forms of the transgene in the liver was performed using primers C1 (50-CTGC

TAACCATGTTCATGCC-30 ) and E2. Primers Cre-5 (50-ACCTGAAGATGTTC

GCGATTATCT-30) and Cre-3 (50-ACCGTCAGTACGTGAGATATCTT-30) were

used for PCR genotyping to detect Cre transgene (Postic et al., 1999).

Mice heterozygous for both mActEflox and Alb-Cre transgenes are referred

to as transgenic mice (Alb-ActE mice). Mice heterozygous for the Alb-Cre

transgene were used as experimental control mice (littermates).

For targeted disruption of the activin E gene, design of the target sequences

and construction of the vectors for transcription activator-like effector
nuclease (TALEN) were conducted by CELLECTIS Bioresearch (Romainville,

France). TALENs were synthesized using methods similar to those described

elsewhere (Cermak et al., 2011). The DNA binding sites for the TALEN pair tar-

geting Inhbe (NM_008382) were 50-TGCAGAGTACAAGATCT-30 and 50-TGC

CAGTGTTGGGCCCC-30 (Figure S6A). The RNA fragments for TALENs were

generated using the T7 promoter and microinjected into pronuclei of fertilized

eggs from C57BL/6J mice. The zygotes were transferred into oviducts of

pseudo-pregnant ICR female mice, and founder mice were derived. To detect

mutant mice, genomic DNA was isolated from tail biopsies and analyzed by

PCR amplification using a primer set (50-TCGAGGTTCTCAAAGCAGAG-30

and 50-GATGACTTTCTCTCGGTTGC-30). The deletion of Inhbe was subse-

quently confirmed by DNA sequencing of PCR products. Only 1 of the 135

mice was determined to have themutation in exon I of the Inhbe gene. Themu-

tation was a 46-bp deletion that gave rise to a frameshift. Therefore, a trun-

cated protein would be produced (Figures S6B and S6C). This female founder

mouse was bred with wild-type C57BL/6J male mice to generate the mutant

strain.

RT-PCR analysis of Inhbe mRNA from the mutant liver was performed

using a primer set (50-TGCGAATTCACCTGGAGCATGAAACTTCCAAAAGCC

CAG-30 and 50-TTAGGTACCCTAGCTGCAGCCACAGGCCTCTACTAC-30 ).
The products were inserted into the multi-cloning site of the expression vector

and confirmed by sequencing (Figure S6D).

Male mice were used for all experiments. Mice housed individually from

6weeks of age weremaintained in a 12-hr light/dark cycle at 22 ± 4�C and pro-

vided standard chow (CE-2; CLEA Japan) and water ad libitum. Experimental

procedures and the care of animals were performed in accordance with the re-

quirements of the Institutional Animal Care Committee at Kitasato University

and in compliance with National Institutes of Health guidelines (17-008).

Determination of Circulating Activin E, Fgf21, and Norepinephrine

Levels

Serum concentrations of activin E and Fgf21 were measured by an inhibin bE

ELISA kit (CEA048Mu; Cloud-Clone Corporation, Katy, TX, USA) and Fgf-21

ELISA kit (MF2100; R&D Systems, Minneapolis, MN, USA), respectively.

Plasma levels of norepinephrine were measured by an ELISA kit (KA 1877; Ab-

nova, Taipei, Taiwan).

Physiological Measurements

Mice were weighed weekly from 4 to 52 weeks of age. Food intake of the mice

wasmeasured for 2–4 days, and average intake per daywas calculated. Rectal

temperature was monitored in mice using a microprobe thermometer system

equipped with a rectal probe (model BAT-12; Muromachi Kikai Company,

Tokyo, Japan) at 15:00–17:00 hr during the light cycle. Respiratory gas anal-

ysis was performed with an Arco-2000 (Arco System, Chiba, Japan) as

described previously (Ishihara et al., 2000). Oxidation of lipid and carbohydrate

were computed based on oxygen consumption (VO2) and carbon dioxide pro-

duction (VCO2). VO2 and VCO2 data were presented as milliliters per minute

per kilogram of total body weight. Behavior of the mice in their home cage

was recorded on video. The duration of locomotion of Alb-ActE mice was

measured for 24 hr.

Histological Analysis

Tissues from mice were weighed, fixed in Bouin’s fluid, and embedded in

paraffin. Sections of 4 mm in thickness were affixed to slides. Cell sizes were

examined using H&E-stained adipose tissues. Four arbitrary fields of view

(0.12 mm2/WAT per field) were analyzed by ImageJ 1.62 (NIH) to estimate

the adipocyte area. Subsequently, the density and distribution of adipocytes

were calculated.

For immunohistochemistry, a rabbit polyclonal anti-Ucp1 antibody (3 mg/mL;

ab10983; Abcam) was reacted with deparaffinized sections overnight at 4�C
and visualized with 3,30-diaminobenzidine tetrahydrochloride using a Histofine

Simple Stain MAX-PO kit (Nichirei, Tokyo, Japan) as described previously

(Hashimoto et al., 2006).

For fluorescence staining, deparaffinized sections were blocked with 1%

normal goat serum for 5 hr at 4�C and then reacted with MitoTracker Red

CMXRos (1:25,000; Thermo Fisher Scientific, Waltham, MA, USA) and a rabbit

anti-UCP1 antibody (1:1,000; UCP11-A; Alpha Diagnostic International, San
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Antonio, TX, USA) overnight at 4�C. The sections were washed three timeswith

PBS and incubated with Alexa Fluor 488 goat anti-rabbit IgG (Thermo Fisher

Scientific). Fluorescent signals were observed using a BZ-9000 fluorescence

microscope (Keyence, Osaka, Japan).

Blood Examination

For the glucose tolerance test, glucose (1 mg per 1 g body weight) was admin-

istrated intraperitoneally to anesthetized mice after 16 hr of fasting. For the in-

sulin tolerance test, mice were anesthetized and 2 mU of insulin (Novolin 30R;

Novo Nordisk, Denmark) per 1 g of body weight was intraperitoneally admin-

istrated after 4 hr of fasting. Blood was drawn from the caudal vein at the indi-

cated times. The blood glucose level was measured by a Medisafe (Terumo,

Tokyo, Japan). The plasma insulin level was measured by an immunoassay

kit (Mouse Insulin ELISA kit U-type; Shibayagi, Gunma, Japan).

Intravenous blood was obtained via the caudal vena cava from 4-hr-fasted

mice under anesthesia induced by pentobarbital. Serumwas then isolated and

assayed for blood parameters of liver functions using kits (Wako Pure Chem-

ical Industries, Osaka, Japan).

RNA Isolation and Real-Time RT-qPCR

Total RNA was isolated from iBAT, ingWAT, mesWAT, and epiWAT using an

RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany). cDNA was prepared

using a ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan); cDNA reverse

transcribed from 5 ng of total RNA was used as a template for real-time

qPCR using Thunderbird SYBR qPCR Mix (Toyobo) as described previously

(Kida et al., 2016). The oligonucleotide primers for RT-qPCR are presented

in Table S1. The Ct value was determined, and the abundance of gene tran-

scripts was analyzed by the DDCt method using TATA-binding protein (Tbp)

as the normalization gene.

Western Blotting

Tissues were rinsed in ice-cold PBS and homogenized in RIPA lysis buffer

(50 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 0.25% deoxycholic acid, 1% NP-40,

and 1 mM EDTA) containing a protease inhibitor cocktail. The proteins were

subjected to SDS-polyacrylamide gel electrophoresis on 12% gels under

reducing or non-reducing conditions and then transferred onto a polyvinyli-

dene difluoride membrane (Millipore, Billerica, MA, USA). The membranes

were blocked with 5%dry non-fat milk and probedwith anti-hActE (Hashimoto

et al., 2006), anti-Ucp1 (Alpha Diagnostic), or anti-b-actin (Abcam) antibodies,

followed by incubation with a horseradish peroxidase-conjugated secondary

antibody. The reaction was detected with a chemiluminescence system

(ECL Plus; Amersham Biosciences). The band intensity was measured by

ImageJ 1.37.

Preparation of CM

Human embryonic kidney 293 cells (RIKEN Cell Bank, Tsukuba, Japan) were

maintained in DMEM/F12 (Invitrogen, Carlsbad, CA, USA) supplemented

with 10% heat-inactivated fetal bovine serum, 100 U/mL penicillin, and

100 mg/mL streptomycin. The cells were seeded in 10-cm dishes at a density

of 7.53 106 cells/dish and transfected with a human activin E expression vec-

tor (Hashimoto et al., 2006) or the empty vector using FuGene6 transfection

reagent (Roche Diagnostics, Indianapolis, IN, USA), according to themanufac-

turer’s instructions. At 24 hr after transfection, the cells were washed with

10 mL of PBS three times and incubated with DMEM/F12 containing 0.1%

bovine serum albumin (5 mL/dish) for 4 days. The culture supernatants from

cells transfected with human activin E or empty vectors were collected as

CM-ActE and CM-control, respectively.

Cell Culture

iBPA cells are stromal vascular cells from neonatal C57BL/6J mouse iBAT

immortalized by infection of the retroviral vector pBabe encoding the SV40 T

antigen (Klein et al., 2002). The cells were maintained in DMEM (Sigma,

St. Louis, MO, USA) supplemented with 10% heat-inactivated fetal bovine

serum, 100 U/mL penicillin, and 100 mg/mL streptomycin (growth medium).

They were seeded in 24-well plates at a density of 2 3 105 cells per well. At

24 hr after seeding (day 0), the cells were treated with growthmedium contain-

ing 10 nM insulin, 1 nM T3, 0.5 mM IBMX, 0.5 mM dexamethasone, and
1202 Cell Reports 25, 1193–1203, October 30, 2018
0.125 mM indomethacin for 48 hr. The cells were subsequently cultured in

growth medium containing 10 nM insulin and 1 nM T3. The medium was

changed every 2 days. On day 4, the cells were treated with CM-ActE or

CM-control (100 mL/500 mL growth medium/well) for the indicated times in

the absence or presence of inhibitors (SB431542 [10 mM], LDN193189, an in-

hibitor of BMP type I receptor [Cuny et al., 2008] [100 nM], and U0126, an in-

hibitor of MEK1/2 [Favata et al., 1998] [10 mM]).

Statistical Analyses

Results are expressed as means ± SEM. Gene expression data were log-

transformed to provide an approximation of a normal distribution before

analyses. Student’s t tests were performed to compare two sets of data.

The Dunnett multiple-comparison test was used to compare results among

groups. Statistical analyses were conducted using Prism5 software

(GraphPad Software, San Diego, CA, USA). A value of p < 0.05 was considered

as statistically significant.
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