2,070 research outputs found

    Empirical comparison of four Java-based regression test selection techniques, An

    Get PDF
    2020 Fall.Includes bibliographical references.Regression testing is crucial to ensure that previously tested functionality is not broken by additions, modifications, and deletions to the program code. Since regression testing is an expensive process, researchers have developed regression test selection (RTS) techniques, which select and execute only those test cases that are impacted by the code changes. In general, an RTS technique has two main activities, which are (1) determining dependencies between the source code and test cases, and (2) identifying the code changes. Different approaches exist in the research literature to compute dependencies statically or dynamically at different levels of granularity. Also, code changes can be identified at different levels of granularity using different techniques. As a result, RTS techniques possess different characteristics related to the amount of reduction in the test suite size, time to select and run the test cases, test selection accuracy, and fault detection ability of the selected subset of test cases. Researchers have empirically evaluated the RTS techniques, but the evaluations were generally conducted using different experimental settings. This thesis compares four recent Java-based RTS techniques, Ekstazi, HyRTS, OpenClover, and STARTS, with respect to the above-mentioned characteristics using multiple revisions from five open source projects. It investigates the relationship between four program features and the performance of RTS techniques: total (program and test suite) size in KLOC, total number of classes, percentage of test classes over the total number of classes, and the percentage of classes that changed between revisions. The results show that STARTS, a static RTS technique, over-estimates dependencies between test cases and program code, and thus, selects more test cases than the dynamic RTS techniques Ekstazi and HyRTS, even though all three identify code changes in the same way. OpenClover identifies code changes differently from Ekstazi, HyRTS, and STARTS, and selects more test cases. STARTS achieved the lowest safety violation with respect to Ekstazi, and HyRTS achieved the lowest precision violation with respect to both STARTS and Ekstazi. Overall, the average fault detection ability of the RTS techniques was 8.75% lower than that of the original test suite. STARTS, Ekstazi, and HyRTS achieved higher test suite size reduction on the projects with over 100 KLOC than those with less than 100 KLOC. OpenClover achieved a higher test suite size reduction in the subjects that had a fewer total number of classes. The time reduction of OpenClover is affected by the combination of the number of source classes and the number of test cases in the subjects. The higher the number of test cases and source classes, the lower the time reduction

    Antioxidants Boost Male Fertility: The Role of Reactive Oxygen Species (ROS) in Modulating Fertility and Sperm Viability in Drosophila melanogaster

    Get PDF
    Reactive oxygen species (ROS) in large amounts have been shown to cause peroxidative damage to tissues. ROS production is heightened in stressful environments, such as after exposure to toxins. Antioxidants have been previously found to reduce lifespan-related, peroxidative damage, inflicted by reactive oxygen species in the common fruit fly (D. melanogaster). Our study analyzes the effects of antioxidants in reducing the damaging effects of reactive oxygen species to rescue pre and post-copulatory reproductive efforts in Drosophila melanogaster. We hypothesized that if male fruit flies were fed antioxidant-enriched diets prior to a reactive oxygen species assault, then the antioxidants would quench the reactive oxygen species. This would then reduce the lipid peroxidation damage to male sperm, resulting in increased pre-copula and post-copula reproductive efforts. Two groups of fruit fly food were each infused with antioxidants, lipoic acid (2.15mM) or melatonin (0.43mM) in 75%ethanol. 75% ethanol solution was used as a control. Males from all treatments were then fed an herbicide, paraquat, to shock their immune systems and increase ROS production. All males were then mated to virgin females and copula behavior, sperm viability and male fertility were assessed. Our results showed significant differences between treatments in sperm viability and number of offspring sired. However, there were no significant differences in mating probability or copula duration (both related to pre-copula sexual selection). These results draw light on the important interplay of ROS and antioxidants in the maintenance of reproductive health especially during stress

    Delayed presentation of cerebellar and spinal cord infarction as a complication of computed tomography-guided transthoracic lung biopsy: a case report

    Get PDF
    INTRODUCTION: Computed tomography-guided transthoracic needle biopsy is a common diagnostic procedure that is associated with various complications including pneumothorax, parenchymal hemorrhage, and hemoptysis. A systemic air embolism is a very rare (0.06 to 0.21%) but potentially fatal complication. CASE PRESENTATION: A 70-year-old Korean male was admitted to our hospital for evaluation of a solitary pulmonary nodule located adjacent to the right inferior pulmonary vein in the medial basal segment of the right lower lobe. A computed tomography-guided needle biopsy was performed by a radiologist using a coaxial needle. A computed tomography image obtained immediately after the biopsy showed intraluminal free air in the proximal ascending aorta. He complained of a mild electrical current sensation in both lower extremities. After three hours he complained of neurological deficit in both lower extremities as well as voiding difficulty. The brain and spine magnetic resonance images showed a right cerebellar and spinal cord infarction at the T8-10 levels. CONCLUSIONS: We report a case of air embolism to the cerebellum and spinal cord causing infarction presenting with an initial symptom of mild electrical current sensation in both lower extremities during the transthoracic needle biopsy. For this potentially fatal complication, early recognition, followed by prompt therapy is critical to reducing morbidity and mortality

    Verrucous epidermal nevus (VEN) successfully treated with indocyanine green (ICG) photodynamic therapy (PDT)

    Get PDF

    Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation

    Get PDF
    Mechanical signal transduction in bone tissue begins with load-induced activation of several cellular pathways in the osteocyte population. A key pathway that participates in mechanotransduction is Wnt/Lrp5 signaling. A putative downstream mediator of activated Lrp5 is the nucleocytoplasmic shuttling protein β-catenin (βcat), which migrates to the nucleus where it functions as a transcriptional co-activator. We investigated whether osteocytic βcat participates in Wnt/Lrp5-mediated mechanotransduction by conducting ulnar loading experiments in mice with or without chemically induced βcat deletion in osteocytes. Mice harboring βcat floxed loss-of-function alleles (βcat(f/f)) were bred to the inducible osteocyte Cre transgenic (10)(kb)Dmp1-CreERt2. Adult male mice were induced to recombine the βcat alleles using tamoxifen, and intermittent ulnar loading sessions were applied over the following week. Although adult-onset deletion of βcat from Dmp1-expressing cells reduced skeletal mass, the bone tissue was responsive to mechanical stimulation as indicated by increased relative periosteal bone formation rates in recombined mice. However, load-induced improvements in cross sectional geometric properties were compromised in recombined mice. The collective results indicate that the osteoanabolic response to loading can occur on the periosteal surface when β-cat levels are significantly reduced in Dmp1-expressing cells, suggesting that either (i) only low levels of β-cat are required for mechanically induced bone formation on the periosteal surface, or (ii) other additional downstream mediators of Lrp5 might participate in transducing load-induced Wnt signaling

    Micro-nano hybrid structures with manipulated wettability using a two-step silicon etching on a large area

    Get PDF
    Nanoscale surface manipulation technique to control the surface roughness and the wettability is a challenging field for performance enhancement in boiling heat transfer. In this study, micro-nano hybrid structures (MNHS) with hierarchical geometries that lead to maximizing of surface area, roughness, and wettability are developed for the boiling applications. MNHS structures consist of micropillars or microcavities along with nanowires having the length to diameter ratio of about 100:1. MNHS is fabricated by a two-step silicon etching process, which are dry etching for micropattern and electroless silicon wet etching for nanowire synthesis. The fabrication process is readily capable of producing MNHS covering a wafer-scale area. By controlling the removal of polymeric passivation layers deposited during silicon dry etching (Bosch process), we can control the geometries for the hierarchical structure with or without the thin hydrophobic barriers that affect surface wettability. MNHS without sidewalls exhibit superhydrophilic behavior with a contact angle under 10°, whereas those with sidewalls preserved by the passivation layer display more hydrophobic characteristics with a contact angle near 60°

    Development of Prediction Method for Dimensional Stability of 3D-Printed Objects

    Get PDF
    Fused deposition modeling (FDM), as one of the additive manufacturing processes, is known for strong layer adhesion suitable for prototypes and end-use items. This study used a multiple regression model and statistical analysis to explore the dimensional accuracy of FDM objects. Factors such as inclination angle, layer thickness, support space, and raster angle were examined. Machine learning models (Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN)) predicted dimensions using 81 datapoints. The mean squared dimensional error (MSDE) between the measured and designed surface profiles was selected as an output for the dimensional accuracy. Support spacing, layer thickness, and raster angle were determined to be statistically significant, and all factors were confirmed as significant predictors. The coefficients of determination for multiple linear regression, GPR, SVM, and ANN models were 76%, 98%, 93%, and 99%, respectively. The mean absolute errors (MAEs)—errors between the measured and the predicted MSDEs—were 0.020 mm and 0.034 mm, respectively, for GPR and SVM models. The MAEs for ANN models were 0.0055 mm for supporting cases and 2.1468 x 10 -5 mm for non-supporting cases
    • …
    corecore