
THESIS

AN EMPIRICAL COMPARISON OF FOUR JAVA-BASED REGRESSION TEST SELECTION

TECHNIQUES

Submitted by

Min Kyung Shin

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2020

Master’s Committee:

Advisor: Sudipto Ghosh

Laura Moreno Cubillos

Leo R. Vijayasarathy

Copyright by Min Kyung Shin 2020

All Rights Reserved

ABSTRACT

AN EMPIRICAL COMPARISON OF FOUR JAVA-BASED REGRESSION TEST SELECTION

TECHNIQUES

Regression testing is crucial to ensure that previously tested functionality is not broken by ad-

ditions, modifications, and deletions to the program code. Since regression testing is an expensive

process, researchers have developed regression test selection (RTS) techniques, which select and

execute only those test cases that are impacted by the code changes.

In general, an RTS technique has two main activities, which are (1) determining dependencies

between the source code and test cases, and (2) identifying the code changes. Different approaches

exist in the research literature to compute dependencies statically or dynamically at different levels

of granularity. Also, code changes can be identified at different levels of granularity using different

techniques. As a result, RTS techniques possess different characteristics related to the amount of

reduction in the test suite size, time to select and run the test cases, test selection accuracy, and

fault detection ability of the selected subset of test cases. Researchers have empirically evaluated

the RTS techniques, but the evaluations were generally conducted using different experimental

settings.

This thesis compares four recent Java-based RTS techniques, Ekstazi, HyRTS, OpenClover,

and STARTS, with respect to the above-mentioned characteristics using multiple revisions from

five open source projects. It investigates the relationship between four program features and the

performance of RTS techniques: total (program and test suite) size in KLOC, total number of

classes, percentage of test classes over the total number of classes, and the percentage of classes

that changed between revisions.

The results show that STARTS, a static RTS technique, over-estimates dependencies between

test cases and program code, and thus, selects more test cases than the dynamic RTS techniques

ii

Ekstazi and HyRTS, even though all three identify code changes in the same way. OpenClover

identifies code changes differently from Ekstazi, HyRTS, and STARTS, and selects more test cases.

STARTS achieved the lowest safety violation with respect to Ekstazi, and HyRTS achieved the

lowest precision violation with respect to both STARTS and Ekstazi. Overall, the average fault

detection ability of the RTS techniques was 8.75% lower than that of the original test suite.

STARTS, Ekstazi, and HyRTS achieved higher test suite size reduction on the projects with

over 100 KLOC than those with less than 100 KLOC. OpenClover achieved a higher test suite

size reduction in the subjects that had a fewer total number of classes. The time reduction of

OpenClover is affected by the combination of the number of source classes and the number of test

cases in the subjects. The higher the number of test cases and source classes, the lower the time

reduction.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Sudipto Ghosh, for his supervision and support. I was

lucky and glad to meet him as my advisor, who is professional and gives me valuable guidance

throughout the entire process of this master’s thesis.

I would like to thank Dr. Laura Moreno Cubillos and Dr. Leo R. Vijayasarathy for agreeing to

be members of my thesis committee. The feedback I got through the software engineering group

meetings was really useful.

I would like to thank my parents and brother who always believed in me and my abilities.

Without their help, love, encouragement, and financial support, I would not even have been able to

start this journey.

I would thank my husband for continuously encouraging me and waiting for this long process

to complete.

This research is funded in part through an award (OAC-1931363) from the National Science

Foundation.

iv

DEDICATION

To my family.

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1

1.1 Motivation . 2

1.2 Research Questions . 4

1.3 Contributions . 5

1.4 Organization . 5

Chapter 2 Related Work . 7

2.1 Evolution of RTS Techniques . 7

2.2 Previous Empirical Evaluations of RTS techniques 12

Chapter 3 Background . 17

3.1 Ekstazi . 17

3.2 STARTS . 18

3.3 HyRTS . 18

3.4 OpenClover . 19

Chapter 4 Research Design . 21

4.1 Evaluation Metrics . 21

4.2 Subject Selection . 24

4.3 RTS Tool Execution . 26

4.4 Mutation Testing . 27

4.5 Data Collection and Visualization . 27

4.6 Statistical Data Analysis . 28

Chapter 5 Results and Discussion . 30

5.1 Reduction in Test Suite Size . 30

5.2 Reduction in End-to-end Time . 32

5.3 Safety and Precision Violation . 35

5.4 Fault Detection Ability . 39

5.5 Interaction Effects Between Program Characteristics and Performance of

RTS Techniques . 42

5.5.1 Total Size in KLOC. 43

5.5.2 Total Number of Classes . 48

5.5.3 Percentage of Test Classes in the Total Number of Classes 50

5.5.4 Percentage of Changed Classes between Revisions. 54

5.6 Discussion . 59

vi

5.7 Threats to Validity . 59

Chapter 6 Conclusions and Future Work . 61

6.1 Conclusions . 61

6.2 Future Work . 62

Bibliography . 64

vii

LIST OF TABLES

2.1 Summary of Past Empirical Evaluations of RTS Techniques 13

4.1 Summary of the Subjects . 24

5.1 The Bonferroni Test Result with Test Suite Size Reduction 32

5.2 The Bonferroni Test Result with End-to-end Time Reduction 34

5.3 The Bonferroni Test Result with Safety Violation . 37

5.4 The Bonferroni Test Result with Precision Violation 39

5.5 Bonferroni Test Result with Fault Detection Ability 42

viii

LIST OF FIGURES

2.1 Timeline Showing Methods Used for Developing RTS Techniques 8

5.1 Test Suite Reduction Rate . 30

5.2 Non-parametric Test Result with Test Suite Size Reduction 31

5.3 End-to-end Time Reduction Rate . 33

5.4 Non-parametric Test Result with Time Reduction . 34

5.5 Safety Violation . 35

5.6 Non-parametric Test Result with Safety Violation . 36

5.7 Precision Violation . 38

5.8 Non-parametric Test Result with Precision Violation 38

5.9 Fault Detection Ability . 39

5.10 Non-parametric Test Result with Fault Detection Ability 41

5.11 Test Suite Reduction per Subject . 43

5.12 Two-way Interaction Between RTS Technique and Total Size in KLOC on Test Suite

Size Reduction . 44

5.13 End-to-end Time Reduction per Subject . 45

5.14 Two-way Interaction Between RTS Technique and Total Size in KLOC on End-to-end

Time Reduction . 46

5.15 Two-way Interaction Between RTS Technique and Total Size in KLOC on Fault De-

tection Ability . 47

5.16 Two-way Interaction Between RTS Technique and Total Number of Classes on Test

Suite Size Reduction . 48

5.17 Two-way Interaction Between RTS Technique and Total Number of Classes on End-

to-end Time Reduction . 50

5.18 Two-way Interaction Between RTS Technique and Percentage of Test Classes on Test

Suite Size Reduction . 51

5.19 Two-way Interaction Between RTS Technique and Percentage of Test Classes on End-

to-end Time Reduction . 52

5.20 Two-way Interaction Between RTS Technique and Percentage of Test Classes on Fault

Detection Ability . 53

5.21 Distribution of Changes in Subjects . 54

5.22 Number of Changed Files and Test Suite Reduction 55

5.23 Two-way Interaction Between RTS Technique and Percentage of Changed Classes on

Test Suite Reduction . 56

5.24 Number of Changed Files and Time Reduction . 57

5.25 Two-way Interaction Between RTS Technique and Percentage of Changed Classes in

Revisions on End-to-end Time Reduction . 58

ix

Chapter 1

Introduction

Regression testing is an essential process used in software development to verify that code

changes do not break previously tested functionality. However, as the size of software keeps grow-

ing, the number of test cases and the time taken to perform testing also increase. In 2017, Google

had 2 billion lines of code in its source code repository, and developers made 16,000 commits and

ran 150 million test executions a day [1]. Clearly, it would be time-consuming to run every test

case each time the code is revised.

Since regression testing is expensive, researchers have developed techniques, such as test prior-

itization, test minimization, and regression test selection [2] to reduce the cost. Test prioritization

reorders test cases based on criteria such as detection of test failures as early as possible, and exe-

cutes test cases for fault-prone modules earlier than others. Test minimization selects the minimal

set of test cases that achieve the same test coverage as the original set of test cases. However, test

prioritization and test minimization have limitations. Test prioritization eventually runs all the test

cases, so there may be no reduction in test execution time [3]. Rothermel et al. [4] present em-

pirical evidence that test minimization can cause a loss of fault detection ability. Regression test

selection (RTS) identifies code changes that occur between revisions, and selects only those test

cases that are impacted by the changes. An RTS technique is considered to be safe if it does not

miss any test cases that should be selected; it is considered to be precise if it selects only those test

cases that are impacted. Rothermel and Harrold [5] state that safe RTS techniques will not miss

any fault revealing test case in the original test suite.

A typical RTS technique requires two main activities: (1) computing the dependencies be-

tween the test cases and program code, and (2) identifying the code changes between revisions.

Depending on the RTS technique, test dependencies can be collected statically [6–8] or dynami-

cally [9–11]. Additionally, dependencies can be analyzed at different levels of granularity such as

statement, method, and class. There are multiple ways to identify code changes (e.g., Unix diff

1

tool, checksums, and tracking code changes in the background of an integrated development envi-

ronment (IDE)) [6, 9–13]. Code changes can also be identified at different granularity levels (e.g.,

statement, method, and class).

1.1 Motivation

Researchers have developed many RTS techniques. In general, there are five main characteris-

tics: test suite reduction, time reduction, safety, precision, and fault detection ability of the selected

test suite. First, RTS techniques can achieve different amounts of test size reduction. Because some

RTS techniques can over-estimate the dependencies between the test cases and the elements of the

code to ensure that no impacted test cases are missing to achieve safety, they can sometimes select

more test cases than precise RTS techniques [7]. For example, only one method may have changed

inside a file, but an RTS technique that uses a file as a unit of change may select all the test cases

that execute any method in the file.

Second, RTS techniques offer different savings in end-to-end testing time. This is the total

time that includes test execution time and any time that the RTS technique spends before and

after test execution. For example, a method-level RTS technique may spend more time on depen-

dency analysis and test selection than a class-level RTS technique [9]. However, a method-level

RTS technique can reduce test execution time by running fewer test cases than a class-level RTS

technique because using a finer granularity level can select test cases more precisely than using a

coarser granularity level.

Third, RTS techniques have different test selection accuracy, which are characterized by their

safety and precision. Depending on how it computes dependencies and identifies code changes, an

RTS technique can have varying safety and precision. Ideally, an RTS technique should balance

safety and precision such that the technique does not miss test cases that would reveal faults or

waste time running too many unnecessary test cases [14].

2

Lastly, the test cases selected by RTS techniques differ in their ability to detect faults in the

code. Ideally, the selected test cases should find as many faults as the original test suite. However,

the fault detection ability can differ depending on the safety of the RTS technique.

Researchers have reported the results of several empirical evaluations to compare RTS tech-

niques. In general, cost reduction and fault detection ability are the two evaluation criteria used

in many RTS empirical studies [15]. Generally four metrics are used to measure cost reduction:

test suite reduction, test execution time reduction, end-to-end time reduction, and precision. There

are two ways to measure fault detection ability: relative (e.g., safety) and absolute (e.g., mutation

score). Computing safety is a relative way to measure fault detection ability because test suites

selected by safe techniques should find as many faults as running the original test suite. Finding

real or seeded faults in a program is a direct way and provides an absolute measurement of fault

detection effectiveness. Over time, the metrics have evolved. Rosenblum and Rothermel [16] used

code coverage to compare the precision of RTS techniques. To compute safety, Graves et al. [17]

measured how many test cases among the set of test cases selected by an RTS technique found

seeded faults. Relatively recent studies [7,8,18] compute precision violation in terms of how many

more test cases did an RTS technique select than the current best technique. They compute safety

violation in terms of how many fewer test cases did an RTS technique select than the current best

technique. Often it is not possible to provide an analytical argument to show that an RTS tech-

nique and its implementation are safe and precise. Since it is generally impossible to manually

determine which test cases must be selected for a specific revision of software in an experiment,

it is difficult to compute the safety and precision of an RTS technique. Thus, safety and precision

violations with respect to another RTS technique can be employed as alternative metrics. Rother-

mel et al. [19] and Graves et al. [17] manually seed faults in a program, while recent studies [18,20]

conduct mutation testing to compute the fault detection ability.

To compare RTS techniques, measuring both cost reduction and fault detection ability is vital

because the techniques should reduce the amount of testing time and at the same time, be rea-

sonably safe and not lose fault detection ability. However, not many RTS empirical evaluations

3

consider both metrics. Engström et al.’s survey [15] shows that there are 38 empirical studies

out of 923 papers, and only 30% of those studies measure both cost reduction and fault detection

ability. The rest use only one of the metrics.

Since Java has become one of the most widely-used programming languages, many Java-based

RTS techniques have been proposed [6–10]. The empirical evaluations reported in these papers

show the differences between the newly proposed technique and the state-of-the-art at the time the

papers were written. The studies are conducted using different subjects, program versions, test

environments and different metrics. Most studies [6, 7, 10] measure only time reduction, such as

end-to-end time reduction and test execution time reduction. Even though several studies evaluated

RTS techniques, the studies did not necessarily compare several techniques together using the same

experimental setup.

1.2 Research Questions

This thesis aims to evaluate four well-known Java-based RTS techniques: Ekstazi, HyRTS,

OpenClover, and STARTS in terms of amount of test size reduction, end-to-end time reduction,

safety and precision violations, and fault detection ability to answer the following research ques-

tions:

RQ1. To what extent can these RTS techniques reduce the test suite size?

RQ2. To what extent can these RTS techniques reduce the end-to-end testing time?

RQ3. What are the safety and precision violations of these RTS techniques?

RQ4. What is the fault detection ability of test suites selected by these RTS techniques?

RQ5. What (if any) is the relationship between the program features (total size in KLOC, to-

tal number of classes, percentage of test classes over the total number of classes, and the

percentage of classes that changed between revisions) and the performance of the RTS tech-

niques?

4

1.3 Contributions

Many RTS techniques have been proposed in the research literature, but there is a lack of

systematic empirical comparisons. The main contribution of the thesis is an evaluation and com-

parison of four recent and widely used RTS techniques using the same experimental conditions.

We ran Ekstazi, HyRTS, OpenClover, and STARTS on multiple revisions from five open-source

projects and compared the results in terms of test suite size reduction, end-to-end time reduction,

safety and precision violation. We also conducted mutation testing to compare the fault detection

ability of these four RTS techniques.

We compare the characteristics of those four RTS techniques that have not been systematically

compared by other researchers. For example, Gligoric et al. [9] left the proof of the safety of

Ekstazi as future work. One of the future works that Zhu et al. [18] left after focusing on finding

faults in Ekstazi, OpenClover and STARTS was to compare the three tools with HyRTS. Our

results show that among the dynamic techniques, Ekstazi, HyRTS, and OpenClover, OpenClover

achieved the lowest safety violation (9.01%) with respect to STARTS, while STARTS achieved

the lowest safety violation (0.87%) with respect to Ekstazi. OpenClover, however, achieved the

highest precision violation, which is over 60% with respect to both STARS and Ekstazi. STARTS

achieved the highest fault detection ability, and HyRTS achieved the lowest.

In the empirical evaluation, we identified program characteristics that have interaction effects

with the performance of RTS techniques. The results of our evaluation show that STARTS, Ekstazi,

and HyRTS achieved a higher test suite size reduction on the programs that have more lines of code.

OpenClover achieved the lowest time reduction regardless of the program characteristics. These

findings are useful for developers who need to select an appropriate RTS technique based on their

priorities and the program they are testing.

1.4 Organization

The thesis is organized as follows. Chapter 2 summarizes related work on regression test se-

lection. The four RTS techniques evaluated in this thesis are described in Chapter 3. We explain

5

the design of the empirical study and define the metrics used in our evaluation in Chapter 4. Eval-

uation results are presented and analyzed in Chapter 5. We summarize our conclusions and outline

directions for future work in Chapter 6.

6

Chapter 2

Related Work

In this chapter, we discuss RTS techniques related to our research. Section 2.1 presents the

evolution of RTS techniques over time. Section 2.2 discusses existing empirical evaluations of

RTS techniques.

2.1 Evolution of RTS Techniques

Simply executing all the test cases is also called the RetestAll strategy. However, running all

test cases is time-consuming. Surveys [2, 15, 21] show the various strategies used to develop RTS

techniques, and the tools implemented for different programming languages (e.g., C, C++, Java,

and AspectJ).

Changes in development environments is one of the factors that affected the evolution of RTS

techniques [8]. Developers’ expectations from RTS techniques have changed due to the growth

of program size and the move toward rapid development cycles. Thus, while relatively old tech-

niques [12, 16, 19] emphasized safety, more recent techniques [1, 22, 23] are designed to be faster

with a little loss of safety.

Figure 2.1 shows that various methods have been used during the past three decades to compute

dependencies between test cases and program code, and identify code changes, which are the two

main RTS tasks. The top part of Figure 2.1 presents the methods used to identify code changes

while the bottom part shows different methods to find test dependencies. Each method introduced

in RTS is presented in chronological order. Overall, the methods used to identify code changes

have become faster and more efficient. For example, comparing graphs (introduced in the late

1980s) takes relatively longer time than computing file changes using the diff tool (introduced in

the late 1990s). Furthermore, computing smart checksums (introduced in the mid-2010s) is more

efficient than using the diff tool because a smart checksum only identifies source code changes that

affect program behavior. Each method to compute test dependencies has been further extended

7

Figure 2.1: Timeline Showing Methods Used for Developing RTS Techniques

by other researchers over time for reasons such as changes in the programming languages. For

example, RTS techniques in the 1990s used a control flow graph to support programs written in C.

In the early 2000s, the control flow graph was extended to Java interclass graph.

The following literature survey shows that RTS techniques have generally evolved by improv-

ing upon the limitations of previous techniques, such as testing time, usability, and scope of ap-

plication. As an example, the recent techniques [6, 9, 10] tend to identify code changes and find

test dependencies at a coarser level for achieving higher cost-effectiveness, while older techniques

used a finer-grained analysis.

Initially, RTS techniques were based on control flow graphs, data flow graphs, and slicing.

The traditional Control Flow Graph (CFG) consists of nodes and edges, where the nodes represent

basic blocks, and the edges show the flow of the program [24].

Leung and White [25] proposed a firewall based RTS technique at the module level. A firewall

is a concept used to identify the boundary in the program that should be retested. Inside the firewall,

source code is changed and there are parts, which are possibly affected by the code changes. The

technique conducts both unit testing for the changes within the firewall and integration testing for

the interaction between the modified modules. The technique identifies code changes based on the

8

data flow graph and finds test dependencies by analyzing the test execution path. Later, Kung et

al. [26] extended the firewall to a class firewall, which handles changes at the class-level, such as

class inheritance. The firewall-based technique saves testing time by limiting the source code that

needs to be analyzed due to the modification. However, the technique can be unsafe because it does

not select test cases from outside of the firewall that may also reveal faults in the program [27].

Chen et al. [28] developed TestTube that is known as a modified code entity based RTS tech-

nique. TestTube categorizes program entities into two – functional (executable code such as as-

signment, if, loop statements) and non-functional (non-executable code such as global variable

declarations and macro definitions), and those entities are saved in a database. TestTube computes

test dependencies by computing test coverage during the test execution. TestTube compares the

two databases for the old and modified versions of the program, and identifies the list of changed

entities in the modified program. Later, Rosenblum and Rothermel [29] demonstrated that Test-

Tube is not as precise as control flow graph based technique [19].

For the first time, Vokolos and Frankl [12] introduced an RTS technique based on textual dif-

ferencing. They used the Unix diff command to find which source files were changed in the new

revision at the statement level. This technique stores a basic block execution trace for each test

case to use as a test dependency. Using the diff function is safe and fast. However, the technique

can be imprecise since it does not determine whether the change made a difference to the program

semantics.

Rothermel and Harrold [19] implemented a technique called DejaVu using the CFG. DejaVu

identifies edges in the new revision that are impacted by program modification and selects test cases

that cover the modified edges. CFG-based RTS techniques are more efficient in terms of the time

taken to compare graphs and select test cases than data flow based techniques [2]. However, CFG-

based techniques may omit fault-revealing test cases due to a lack of data dependency information.

Later, CFGs were extended to support features in object-oriented languages [30–34]. For

instance, Rothermel et al. [30] developed an RTS technique for C++ programs using the Inter-

procedural Control Flow Graph (ICFG) and Class Control Flow Graph (CCFG). While a CFG rep-

9

resents a single method, an ICFG represents the interactions between multiple methods using call

and return nodes. To represent programs that have multiple entry points (e.g., classes), the CCFG

was proposed. Rothermel et al.’s technique [30] handles changes in both executable (e.g., assign-

ment, conditionals, function calls, and iteration) and non-executable (e.g., declaration) statements

such that the selected test cases find faults that the test cases selected by other techniques [19, 27]

do not detect, such as faults in variable type changes on non-executable statements.

Harrold et al. [31] first extended the CFG to support Java using the Java Interclass Graph (JIG)

to implement the tool, RETEST . This tool collects test coverage at the method level by instru-

menting the code and identifies code changes by comparing two JIGs of original and modified

versions of programs. The JIG handles various Java features (e.g., inheritance, polymorphism,

exception handling) and does not require analysis on external classes (e.g., library classes). Tech-

niques that support other object-oriented languages [30, 35] need a complete analysis of external

resources if internal classes interact with external classes. However, building program graphs and

comparing the execution traces become expensive as the program size increases [36].

Orso et al. [32] developed DejaVOO, which identifies changes at the edge level similar to

DejaVu [19] and scales up to large-sized programs. DejaVOO partitions RTS phases into two

and uses different graphs in each phase. DejaVOO creates the Interclass Relation Graph (IRG) to

quickly identify code changes at the class level. Then, DejaVOO selects test cases at statement

level using the JIG for precise selection. DejaVOO saves time in test selection by analyzing only

the changed classes but still achieves high safety and precision. However, the empirical study [32]

shows that the larger the program size, the higher the overhead in comparing two revisions.

A couple of other researchers also extended CFG to JIG [33,37]. Further, Xu and Rountev [34]

extended the JIG to AspectJ Inter-module Graph (AJIG) to support RTS for AspectJ programs.

Generally, graph-based techniques are safe because the techniques are guaranteed to select test

cases that traverse modified code, but the computation of graphs may be time-consuming and

inefficient for large programs.

10

Distinct from code-based RTS techniques, Chen et al. [38] developed a black-box RTS tech-

nique based on models. Instead of source code analysis, the technique relies on the program

specifications and uses traceability between the design and test cases. The UML activity diagram

represents program behavior. Chen et al. [38] create a traceability matrix using this UML activity

diagram by check the covered paths and nodes for each test case. Similar to CFG based tech-

niques [19], code changes are identified at the edges level in the activity diagram, and the test

cases that execute the affected edges are selected using the traceability matrix. Chen et al. [38]

state that the techniques using program specifications are useful in industrial programs because

those techniques are not limited to supporting a specific programming language and do not require

a tester to understand source code.

Soetens et al. [13] developed ChEOPSJ, which tracks code changes in the background of the

Eclipse IDE and finds dependencies between the code and test cases using the FAMIX model.

The tool captures the code changes while developers edit the code. While previous RTS tech-

niques [32, 34] were evaluated on relatively small-sized programs (e.g., open source libraries, and

sample packages that comes with tools), Soetens et al. [13] evaluated ChEOPSJ on larger and

more complex industrial programs. However, ChEOPSJ can be unsafe because it does not support

certain Java features (e.g., polymorphism) and can miss relevant test cases [39].

Gligoric et al. [9], Legunsen et al. [6], and Zhang [10], on the other hand, computed smart

checksums which ignore changes that do not impact debug information. The techniques [6, 9, 10]

are used in our empirical comparison, and we describe details in Section 3.

Recently, researchers have developed RTS techniques that are easy to adapt to different pro-

gramming languages. Romano et al. [40] proposed SPIRITuS, which uses lexical similarities to

identify changed methods, and method coverage information for dependencies. In addition to be-

ing able to handle any programming language, the technique is also flexible because users can

change the test selection threshold if they want to select more or fewer test cases. Depending on

how users set a threshold, the technique can be unsafe.

11

ReTEST, introduced by Azizi and Do [41], is not limited to supporting a specific programming

language. ReTEST compares two versions of the program using a diff tool to collect terms from

the part of the changed code to construct queries. In this context, queries, often called user queries,

are formal statements of information needs in information retrieval. Then, instead of collecting

test dependencies, ReTEST uses the failure history of tests, test case diversity, the program change

history, and the textual similarity of program changes. The fault detection ability of the tool is

affected by a slight difference of many factors, such as the similarity score (adjustable by users)

and the ratio of the number of tests to the number of queries. Azizi and Do [41] empirically

demonstrate that the performance of ReTEST is consistent regardless of the growth of the number

of test cases while some RTS techniques [32, 36] are affected by the size of the program. This is

because ReTEST is based on the test case graph database, where the database efficiently stores

nodes (test cases), edges (diversity between test cases), and properties (e.g., test failure history).

Recently, companies in the industry proposed RTS techniques that aim to shorten test time and

scale-up to industrial programs that may be less safe [8]. To develop such techniques, Google [1]

utilized features that were not used previously, such as test execution frequencies and information

of developers. Facebook [22] applied machine-learning to RTS. Microsoft used project level test

dependencies (Jar granularity changes and test dependencies). Microsoft [42] demonstrated that

project-level RTS selects as much as 17.4% fewer test cases than class-level RTS.

2.2 Previous Empirical Evaluations of RTS techniques

As RTS techniques evolved, the techniques used for evaluating them (e.g., evaluation goals,

comparison targets for a given RTS technique, programs used for empirical studies, and metrics

used) also evolved [21]. Table 2.1 shows that those techniques used to conduct empirical stud-

ies have become more diverse over time. For example, researchers [6, 17, 32, 39, 43, 44] have

demonstrated the cost reduction of RTS techniques compared with the original test suite. As

more RTS techniques have been developed and are publicly available, relatively recent empiri-

cal studies [10, 18, 40, 41, 45] used other RTS techniques as comparison targets more often. Also,

12

programs from Siemens benchmarks occasionally used as subject programs in empirical evalua-

tions [17,19,43] of RTS techniques around the late 1990s, while recent studies [6,9,10] use 20-30

various open-source programs.

Table 2.1: Summary of Past Empirical Evaluations of RTS Techniques

Reference

(Year)

PL(s)
Comparison

Target(s)

Subject

Program(s)

Metrics

Used

Rothermel

and Harrold [43]

(1997)

C Retest all Siemens
end-to-end time red.

test suite size red.

Rothermel

and Harrold [19]

(1997)

C n/a Siemens
end-to-end time red.

test suite size red.

Harrold et al. [46]

(1998)

C Aristotle Unix utilities graph size red.

Graves et al. [17]

(2001)

C
Retest all

Random

Siemens
test suite size red.

fault detection ability

Rothermel et al. [30]

(2001)

C++ n/a C++ library test suite size red.

Orso et al. [32]

(2004)

Java Retest all
open-source

projects

test exec time red.

test suite size red.

precision

Xu

and Rountev [34]

(2007)

AspectJ
AspectJ-

compiler

AspectJ-

compiler-

example package

test suite size red.

end-to-end time

13

Chittimalli

and Harrold [45]

(2008)

C DejaVoo
real-world-

applications

test suite size red.

safety

precision

Soetens et al. [39]

(2013)

Java Retest all
open-source

projects

test suite size red.

safety

precision

fault detection ability

Shi et al. [14]

(2014)

Java
Retest all

Random

open-source

projects

test suite size red.

fault detection ability

Gligoric et al. [9]

(2015)

Java
Retest all

FaultTracer

open-source

projects

end-to-end time red.

test exec time red.

test suite size red.

Soetens et al. [20]

(2016)

Java Retest all
open-source

projects

end-to-end time red.

test suite size red.

fault detection ability

Legunsen et al. [6]

(2017)

Java Retest all
open-source

projects

end-to-end time red.

test suite size red.

Zhang [10]

(2018)

Java Ekstazi
open-source

project

end-to-end time red.

test exec time red.

test suite size red.

Romano et al. [40]

(2018)

Any-

language

Unix Diff

Random

Ekstazi

open-source

projects

test suite size red.

safety

fault detection ability

Azizi

and Do [41]

(2018)

Any-

language

Modified-

DejaVu

open-source

projects

test suite size red.

fault detection ability

14

Zhu et al. [18]

(2019)

Java

Clover

Ekstazi

STARTS

open-source

projects

safety violation

precision violation

generality violation

Fu et al. [44]

(2019)

C++ Retest all
open-source

projects

end-to-end time

test suite size red.

Before researchers started comparing RTS techniques with each other [17, 29, 47], they often

evaluated their proposed technique by itself. Some studies compared the newly proposed technique

with RetestAll with respect to the time required to select and run test cases, and also the reduction

in the test suite size [43]. Other empirical studies were conducted using different-sized programs to

demonstrate that their technique selects fewer test cases [46]. The early comparative studies of RTS

techniques occasionally included a comparison with random selection [17]. For the subjects used

in the empirical evaluation, researchers seeded faults manually or used subjects that have known

faults, such as the Siemens benchmarks that contain realistic faults seeded in seven C programs.

Engström et al. [15] summarized that 70% of RTS-related empirical studies published before 2006

consider the metrics test suite reduction and total testing time.

Rothermel and Harrold [19] defined four evaluation criteria: inclusiveness, precision, effi-

ciency, and generality. Inclusiveness measures if a technique is safe by computing the number

of selected test cases that traverse modification code. Efficiency is related to the time (and space)

saved by a technique, and generality is about the ability to handle different languages and complex

code structures. Many researchers have also used these criteria, such as safety and precision [45],

to compare test selection accuracy. Chittimalli and Harrold [45] computed false positives and false

negatives of the selected test cases to calculate safety and precision. They had ground-truth infor-

mation about which test cases should be selected because the developers provided the programs.

Soetens et al. [39] implemented scripts to conduct a dynamic analysis that executes the original test

suite to trace the relationship between test cases and source code methods. Then, they computed

the safety and precision by comparing the list of test cases selected by their tool and those ob-

15

tained from the result of dynamic analysis. Other researchers have calculated the safety violation

and precision violation of a new RTS technique with respect to the current best technique [7, 8].

In this way, researchers can demonstrate whether a new technique is as safe (or precise) as the

state-of-the-art technique.

Collecting real faults in programs for research purposes is challenging, so researchers manually

seed faults in a program or use mutation testing. Andrews et al. [48] show that mutation faults can

be effectively used instead of real faults in Software Engineering experiments. Mutation testing

has been applied to empirically evaluate Java-based regression testing techniques to compute the

fault detection ability of the selected test cases [14, 20, 39]. Researchers compared the mutation

scores of the test cases selected by the RTS technique with that of the original test suite [40]. Many

researchers used PIT for mutation testing because Java projects based on Ant or Maven can easily

adopt PIT.

Zhu et al. [18] developed a framework, called RTSCheck, to verify if RTS tools themselves

contain faults. This research mainly focuses on examining the reliability of RTS techniques by

conducting empirical studies. RTSCheck computes the safety violation, precision violation, and

generality violation of RTS tools. Generality violation detects if RTS techniques include unex-

pected behavior, such as the occurrence of test failure even though there was no test failure in the

original test suite. As a result, RTSCheck found 27 bugs in recent Java-based RTS tools, such as

the inability to detect changes in non-Java files (e.g., configuration files) and unexpected behaviors

with specific annotations.

Many researchers have compared RTS techniques empirically [6, 9–11, 40]. The survey by

Kazmi et al. [21] shows that there are 25 different metrics used in 47 RTS empirical evaluations.

Still, many of these studies focus on time reduction, such as end-to-end time reduction and test ex-

ecution time reduction. Furthermore, researchers used various open-source projects for empirical

evaluation based on the compatibility with the tools (e.g., Java and JUnit versions).

16

Chapter 3

Background

In this chapter, we explain the four Java-based techniques that we used in our empirical study.

The implementations of these techniques are publicly available. We focus on how the techniques

(1) compute the dependencies between the source code and the test cases, and (2) detect changed

parts of the code. The sections present the RTS techniques in chronological order of development.

3.1 Ekstazi

Ekstazi [9] is a dynamic, byte-code instrumentation-based RTS technique that uses file-level

dependencies. First, Ekstazi compares smart checksums between the previous and current versions

of each file to determine whether it changed. Smart checksums ignore debug-related information.

Files can be executable code (e.g., class files) and external resources (e.g., configuration files).

Then, Ekstazi selects test cases that are relevant to checksum changed files. All newly added test

cases are also selected. During test execution, Ekstazi observes which files are invoked by each

test case. Ekstazi collects test dependencies and stores them in a separate file, one per test class.

The file includes the names of classes that are accessed during test execution and the class file

checksums. In testing subsequent revisions, Ekstazi compares previously saved checksums with

the current checksums to determine which files have changed.

Open source projects (e.g., Apache Camel, Commons Math, and CXF) adopted Ekstazi for

regression testing. Developers can use Ekstazi by adding a plugin to their projects and there is no

need to integrate with version control systems like other RTS tools introduced before Ekstazi such

as ChEOPSJ [39]. Ekstazi aims to balance the program analysis and test running time. Gligoric

et al. [9] show that Ekstazi on average reduces the end-to-end time compared to retest-all by 32%.

Being a dynamic RTS technique, Ekstazi is expected to be more precise than static RTS techniques.

17

3.2 STARTS

STARTS [6] is a static RTS technique that uses class-level analysis. In work prior to STARTS,

Legunsen et al. [7] stated that their research was motivated by the usability of Ekstazi [9]. Like

Ekstazi, STARTS uses smart checksums to detect changed types such as classes and interfaces.

After compiling a new revision, STARTS computes the checksum to determine which types are

changed. Then, STARTS eliminates test cases not relevant to the changed types by using the type-

to-test mappings that are created during the previous test execution. When there is no previously

saved dependency mapping, which is the situation the first time STARTS executes, all types are

considered to be changed, and all the test cases are selected for execution. After a test suite execu-

tion, STARTS finds test dependencies and updates the mappings for the next revision. Mappings

are based on a type dependency graph (TDG), where nodes represent types, and edges indicate

the dependencies between types. STARTS utilizes a class firewall technique, and thus, also se-

lects test cases that have dependencies with classes that are impacted by changes in the inheritance

hierarchy.

Legunsen et al. [7] conducted a study that showed that class-level static RTS (65.3% of the

retest-all time) was 2.9% faster than Ekstazi (68.2% of the retest-all time). Out of 22 subjects,

class-level static RTS had a safety violation with respect to Ekstazi on two revisions, while pre-

cision violation was 42.9% on average with respect to Ekstazi. Subsequently Legunsen et al. [6]

demonstrated that STARTS can achieve a reduction on average of 12.4% of the end-to-end time

compared to retest-all. Since STARTS is a static RTS technique, it is less precise than dynamic

RTS techniques. Compared to Ekstazi, STARTS can be unsafe because it does not handle Java

reflection.

3.3 HyRTS

Ekstazi and STARTS demonstrated that coarse (e.g., class-level) dependency analysis is faster

than fine-grained (e.g., method-level) analysis. STARTS [7] shows that RTS using class-level anal-

ysis is ten times faster than RTS using method-level analysis. However, class-level RTS actually

18

selects 2.8 times more test cases than method-level RTS [9]. HyRTS [10] is a dynamic RTS tech-

nique that uses a combination of file-level and method-level analysis. The aim is to implement the

fastest RTS by taking advantage of dependency analysis at different levels of granularity.

In HyRTS, newly introduced classes and removed classes are considered as file-level changes.

First, HyRTS computes file checksums of the current and old revisions. Only if the file check-

sums differ, HyRTS computes and compares method checksums. During bytecode instrumenta-

tion, HyRTS inserts code to track which methods are invoked during test execution. This enables

HyRTS to collect the dependencies between methods and test cases. Class level dependencies can

be derived based on the method dependencies since a method belongs to a class. HyRTS provides

an offline mode for users who want to get test results faster by collecting dependencies after test

execution is over while the online mode is the default option that collects test dependencies during

test execution. Zhang [10] demonstrated that the end-to-end time of HyRTS is 21.1% faster while

selecting 8.8% fewer test cases than Ekstazi on average. HyRTS is more precise in selecting test

cases than class-level RTS and has been proven not to add any new safety issues.

3.4 OpenClover

The Java code coverage tool, Clover [11], was managed by a software company, Atlassian, and

became an open-source project called OpenClover in 2017. OpenClover has an RTS feature called

test optimization [49], which dynamically computes dependencies using source code instrumen-

tation and analyzes the dependencies between test cases and source code at the file level. Ekstazi

considers both executable code and external resources, but OpenClover only considers executable

code. OpenClover compares file sizes and checksums in the current and previous revisions to iden-

tify file changes. File checksums are stored in a variable of type long, which can overflow after a

certain value. Thus, both the checksums and file size are used for comparison. During test execu-

tion, OpenClover tracks per-test coverage and updates the coverage information in a database to

compute dependencies between source files and test cases for the next run.

19

By default, OpenClover runs a clean build every ten test executions to remove any collected

data. In this way, OpenClover detects potential non-Java file changes and updates dependencies

that may be missed. Since a clean build removes previous test results, such as saved file checksums,

OpenClover runs a full test on the subsequent test execution. However, running a full test may

increase the overhead, so users are allowed to change the default number of executions after which

clean build should be run. Experiments [49] show that OpenClover runs 10% of full test cases,

which takes 30% of build time compared to using a normal build, which executes all the test cases.

However, since OpenClover is not a research tool, OpenClover’s official website does not provide

the details of the experiment.

20

Chapter 4

Research Design

This chapter describes the design of the empirical study. Section 4.1 defines the five metrics

used in the evaluation and the four program features, which may have an impact on the metrics.

Section 4.2 describes the subject programs used in our empirical study. Section 4.3 lists the steps

to execute RTS tools. In Section 4.4, we address how mutation testing was conducted. Section 4.5

explains how we extracted raw data from log files, calculated metrics, and visualized the data.

Finally, Section 4.6 explains the statistical analysis used to compare RTS techniques.

The empirical study was conducted on a Linux (Fedora) workstation, a 4-core 3.2GHz ma-

chine with 12GB memory, Java 64-Bit Server version 1.8.0_242. We fully automate the entire

experiment to avoid human error, save time, and ensure repeatability.

4.1 Evaluation Metrics

We used five metrics to evaluate the four RTS techniques: test-suite reduction, end-to-end time

reduction, safety violation, precision violation, and fault detection ability.

Test-suite reduction Given a program P, original test suite T, modified version P’ and selected

test suite T’,

TestSuiteReduction =
|T | − |T ′|

|T |
(4.1)

Higher test suite reduction is better.

End-to-end time reduction The end-to-end time is the total time, which includes test execution

time and any time that the RTS technique spends before or after test execution. Higher reduction

is better. Given the original testing time t and the testing time using the RTS technique, t′,

21

EndToEndT imeReduction =
t− t′

t
(4.2)

Safety violation Assume that there are two tools, RTS1 and RTS2, which select and run test

suites T1 and T2, respectively. The safety violation metric calculates the safety violation of RTS2

with respect to RTS1. The denominator is the cardinality of the union of two test suites, and the

numerator gives the number of tests that RTS1 selected, but RTS2 did not select. Here, lower

safety violation is better if RTS1 is known to be safe.

SafetyV iolation =
|T1 − T2|

|T1 ∪ T2|
(4.3)

Precision violation We use the same assumptions as above. Only the numerator changes here

because we want to calculate how many extra tests were selected by RTS2 with respect to RTS1. If

RTS2 selects more tests that should not be selected, the numerator increases. Thus, lower precision

violation is better if RTS1 is known to be precise.

PrecisionV iolation =
|T2 − T1|

|T1 ∪ T2|
(4.4)

Fault detection ability We calculated the fault detection ability of the test suites selected by all

the RTS techniques as well as the original test suite using the mutation score. We did not collect

data on equivalent mutants, which is common practice in current research.

FaultDetectionAbility =
KilledMutants

NumberOfTotalMutants
(4.5)

22

A test suite selected by an RTS technique should kill as many mutants as possible, so higher

fault detection ability is better. However, the selected test suite cannot exceed the original test

suite’s ability to detect faults.

We found four program features that may have interaction effects with the performance of RTS

techniques: total (program and test code) size in KLOC, total number of classes, the percentage of

test classes out of the all the classes, the percentage of changed classes between revisions.

Total size in KLOC. Total size in KLOC measures the size of a program and test cases by

counting the number of code lines. We considered the projects that have over 100 KLOC as large-

sized programs as other RTS empirical studies [27, 50] considered. As such, the projects that have

less than 100 KLOC are considered as relatively smaller sized programs.

Total number of classes. In object-oriented programming, the number of classes is often used

as a metric to measure the size of programs [51]. This factor measures the total number of classes

including programs and test cases.

Percentage of test classes. This factor measures the percentage of test classes over total number

of classes.

PercentageOfTestClasses =
NumberOfTestClasses

NumberOfTotalClasses
× 100 (4.6)

RTS techniques compute dependencies between the code and test cases, so the portion of test

classes out of total number test classes is an important factor that may impact the performance of

RTS techniques.

Percentage of changed classes. This factor measures the percentage of changed classes over

total number of classes.

23

PercentageOfChangedClasses =
NumberOfChangedClasses

NumberOfTotalClasses
× 100 (4.7)

We used STARTS to count the number of files for which smart checksums changed between

revisions. Thus, we ignore the changes that do not affect the program behavior. We explain the

details of steps for collecting this data in Section 4.3.

4.2 Subject Selection

Table 4.1 shows the subjects used in our empirical study. These programs were used by other

researchers [6, 9, 10]. However, we used different revisions for the comparison. We first found the

head revision that does not have a build or compile error, and no test failures with the four RTS

techniques. We then selected up to a hundred and fifty revisions that successfully ran with all four

RTS techniques. In some cases, the revisions gave errors with one or more RTS tools, and were

removed. The five open-source Java projects met the prerequisites for the RTS tools: (1) Maven

version 3.2.5 or above, (2) Surefire version 2.14 or above, (3) JUnit version 3 or above.

Table 4.1: Summary of the Subjects

Subject Revisions
Total Number of

Classes

% of

Test Classes

Total

Size

(KLOC)

Asterisk 129 825 8.12 204

Commons CLI 93 56 55.36 16

Commons Collections 104 791 37.80 129

Commons Imaging 145 578 30.62 57

Commons Net 112 274 24.82 64

Table 4.1 shows the number of revisions used, the average number of implementation and test

classes, the average percentage of test classes in the total number of classes, sizes (Line of Code)

of each subject on average over revisions. The subjects range in code size from 16 KLOC to 204

24

KLOC. In total, the study involves 583 revisions that include 308K test classes and 56 million

LOC.

Below, we describe each subject in detail.

Asterisk. Developed since 2006 by Digium, Asterisk is a framework for communication ap-

plications. Two Asterisk Git repositories exist for C and Java. For our study, we used the Java

version called Asterisk-Java. Henceforth, we will call it Asterisk for convenience. Asterisk is the

largest-size (KLOC) subject in the study. It has 825 source classes and 67 test classes on average

per revision, meaning that it has the smallest percentage of the test classes in the total number of

classes compares to the rest of other subjects.

Commons CLI. Commons CLI provides an API for parsing command-line options passed to

programs. Commons CLI has the smallest program size (KLOC) but highest percentage of test

classes in the total number of classes over all subjects.

Commons Collections. Commons Collections is an Apache framework that provides data struc-

tures in Java. Commons Collection has the most commits, and the second highest number of test

classes and the percentage of test classes in the total number of classes.

Commons Imaging. Commons Imaging is a Java image handling library that can quickly parse

image data and support a variety of image formats.The number of revisions from Commons Imag-

ing is the highest out of all subjects because 96.67% of the considered revisions had build success

on all RTS tools.

Commons Net. Commons Net provides network utilities and internet protocols for Java. It has

the longest time of running the original test suite though it has a relatively small number of test

classes compares to other subjects used in this study.

After selecting the subjects, we paired the Git SVN URL with the head hash for each subject

and placed them in a file. Our bash script read the file line by line and downloaded each subject

25

(master branch). In the subject directory, the Git log utility provides historical hash numbers and

comments. We specify head hash as the oldest revision. Then, we printed the hashes backwards

to get the older version first and newer versions later. Finally, we downloaded revisions of each

subject using the list of hashes.

4.3 RTS Tool Execution

We automated the process to run Ekstazi, STARTS, HyRTS, and OpenClover. Given a program

P , there are revisions from P1 to Pn. We created a working directory before repeating the following

five steps for each tool.

1. Copy Pi to the working directory.

2. Add RTS tool plugin to pom.xml.

3. Run RTS tool and redirect standard output to a file (LogFile).

4. Move the RTS tool result (LogFile and directories generated by RTS tool) back to Pi’s di-

rectory.

5. If Pi+1 does not exist, clean the working directory and move to the next subject.

We ran the above steps three times for end-to-end time measurement because time measure-

ments can be sensitive to the environment. We took an average of three times of tools execution

results.

We also collect a list of changed files in each revision. The lists are used for mutating only

the changed program files. The list of changed files is generated by running STARTS: diff

between steps 2 and 3 when running STARTS. The diff command prints the list of files that

STARTS identified as changed by computing smart checksums. STARTS [6] reuses the part of

the Ekstazi source code to computes checksum. HyRTS [10] also computes the checksum in the

same way with Ekstazi and STARTS. However, STARTS is the only RTS tool that provides the

command-line option to show files that are identified as changed among the four RTS tools.

26

4.4 Mutation Testing

Mutation testing [52] is a software testing technique used to assess the quality of tests by seed-

ing faults in the code. Mutation testing has a step to create the faulty version of the programs, called

mutants. If any test fails on a mutant, we consider that mutant to be killed. Otherwise, the mutant

is live. Researchers have used mutation testing to evaluate tests as a way to measure test quality,

and studies have demonstrated that mutation testing could replace manual faults seeding in a pro-

gram [48]. Accordingly, many mutation testing tools have been developed [53], such as MuClipse,

MuJava, Major, and PIT. We selected PIT for our evaluation process because PIT is easily adopted

by Maven-based Java projects and has been widely used in other research studies [14, 20, 54].

In our experiment, we conducted mutation testing to compare the fault detection ability of the

tests selected RTS techniques. Two tasks had to be performed: (1) generate mutants for each

revision, and (2) execute the original tests and those selected by each RTS tool on the mutants.

First, we created mutants with PIT. We ran PIT if changed classes exist in the program. That

is because we specified the classes names for seeding faults only in the changed classes, and PIT

crashes if there are no classes to mutate. We only mutate the changed classes since developers can

introduce new faults only in the changed classes.

When executing PIT, we edited the configuration to run the necessary test cases: all the original

tests or only the tests selected by each RTS tool. These tests are extracted from the logs generated

during the execution of each RTS tool. At the end of the test, PIT prints the total number of

generated mutants, the number of killed mutants, and the details of mutants such as which mutation

operator was used. We redirect the standard output and error messages generated from PIT to a file

to calculate and compare the fault detection ability in the evaluation step.

4.5 Data Collection and Visualization

We collected three different formats of data in this experiment. We collected log files obtained

from running the RTS tools and PIT (unrefined mutation testing results). We extracted raw data

from log files, such as time taken during the testing, test class names selected and run by tools, and

27

the number of killed mutants. We utilized a regular expression to capture the parts after a particular

set of words. Then, we saved the raw data into CSV files. Second, we calculated five evaluation

metrics and saved them in Excel files. Third, we visualized those metrics using Excel.

4.6 Statistical Data Analysis

We conducted both non-parametric and parametric statistical analysis to compare the RTS tech-

niques.We used non-parametric tests because our data is not normally distributed. But we also used

the more conservative parametric tests to corroborate the non-parametric test results. We first used

nparLD to identify if the values of evaluation metrics for each research question were statistically

significant. The nparLD is a package for R that provides a function to analyze the non-parametric

variance of longitudinal data by means of the Wald-type statistic [55]. The nparLD is known for

being robust even for a small sample size. We used the nparLD because our data set is not normally

distributed, and certain groups (e.g., groups that have multiple numbers of changed files between

revisions) have a small sample size than other groups. We used an alpha of 0.05 as the cut-off for

our statistical tests.

Akritas et al [56] defined the Wald-type statistic as follows:

Qn(C) = np̂⊤C⊤[CV̂nC
⊤]+Cp̂ (4.8)

under the hypothesis HF

0 : CF = 0 where C is a contrast matrix, F is the vector of distribu-

tions, p is the vector of the relative marginal effects, and V̂n is the empirical covariance matrix

of the ranks. The Wald-type statistic is a popular and robust method for testing both simple and

composite null hypotheses [57]. The non-parametric test was conducted on RStudio using the R

software package provided by Noguchi et al [55]. However, the statistical test results using nparLD

do not show pair-wise differences between groups. Thus, as a post-hoc analysis, we conducted a

Bonferroni test for multiple comparisons to identify significant pair-wise differences. The Bon-

ferroni correction accounts for multiple comparisons by adjusting the significance level for testing

28

each hypothesis. Specifically, the significance threshold is reduced as follows: α/n, where n is

the number of hypotheses tested. This correction reduces the likelihood of Type 1 errors when

conducting multiple comparison tests. The Bonferroni test is the most simple and widely used test

for multiple comparisons [58].

We corroborated the non-parametric test results produced by the nparLD package by conduct-

ing parametric repeated measures MANOVA (multivariate analysis of variance) tests. Compared to

their non-parametric counterparts, parametric tests are generally more conservative, and less likely

to make statistical errors (e.g., false positives) [59]. We conducted mixed factorial MANOVA

to test for both within-subject effects (i.e., differences in evaluation metrics by RTS technique)

and between-subject effects (i.e., differences in evaluation metrics by program characteristics). In

addition to testing the main effects of the within-subject factor (i.e., RTS technique) and between-

subject factors (i.e., program characteristics), we tested for interaction effects between the two.

We accounted for a violation of the assumption of sphericity by correcting the degrees of freedom

using the Huynh-Feldt’s estimates of sphericity. The Huynh-Feldt correction is best known for

producing a more accurate significance p-value for the MANOVA test [60]. For the post hoc tests

that involved pair-wise comparisons between RTS techniques and the different levels of program

characteristics, we used Bonferroni corrections. The parametric tests were conducted using SPSS,

a commercial statistical and data analysis software tool.

29

Chapter 5

Results and Discussion

In this chapter, we present the answers to the five research questions and then discuss several

threats to validity. Sections 5.1-5.5 show the results of empirical study and answer the research

questions. Section 5.6 discusses the results of our empirical evaluation and compares them with the

results from other studies. The threats to validity of the empirical study are discussed in Section 5.7.

5.1 Reduction in Test Suite Size

Figure 5.1: Test Suite Reduction Rate

The boxplots shown in Figure 5.1 display the percentage test suite reduction obtained by each

tool for all the revisions considered in the study. Note that the box plots represent the mean values

using the symbol ‘x’.

OpenClover’s median test suite reduction is 3.54% lower than STARTS, Ekstazi, and HyRTS.

The third quartile of STARTS, Ekstazi, and HyRTS is the same or close to the median and max

value because 64.35% of revisions do not have files whose smart checksums changed. The mean

30

value shows that Ekstazi and HyRTS select fewer test cases than STARTS. STARTS being a static

technique, over-estimates test dependencies and selects more test cases. Even though OpenClover

is a dynamic technique like Ekstazi and HyRTS, OpenClover’s mean value is 7.89% higher than the

static technique, STARTS. The reason is that OpenClover considers multiple elements to identify

code changes. Thus, OpenClover identifies more source files as having changed and accordingly

selects more test cases. OpenClover’s median value also shows that OpenClover selects and runs

test cases from the revisions on which the other tools did not run any test case.

Figure 5.2: Non-parametric Test Result with Test Suite Size Reduction

Figure 5.2 shows the line plot for the non-parametric test result using the test suite size reduc-

tion achieved by the four tools on all the revisions that were considered in the study. The points

of the relative treatment effect (RTE) appear in an order of OpenClover < STARTS < Ekstazi <

HyRTS. This can be interpreted to mean that HyRTS achieved the highest test suite size reduction

while OpenClover achieved the lowest. As a validation of the non-parametric test, the p-value of

Wald-Type statistic was 4.08739e-263. This shows that there are statistical differences in four test

suite size reductions because the p-value is less than 0.05.

However, the result of the non-parametric test using nparLD does not show whether differences

in test suite size reductions between pairs of RTS techniques are statistically different. For example,

31

the differences in RTE between HyRTS and STARTS is 0.058. But this difference does not indicate

if STARTS achieved lower test suite size reduction than HyRTS. Similarly, although OpenClover

achieved the lowest test suite size reduction, it is not clear if the differences between the number

of test cases selected by OpenClover and the other techniques are statistically significant.

Table 5.1: The Bonferroni Test Result with Test Suite Size Reduction

Comparison Difference p-value

Ekstazi - HyRTS -1.209246
1.0000

(p > 0.05)

Ekstazi - OpenClover 10.785545
0.0000

(*** p <= 0.001)

Ekstazi - STARTS 2.887387
0.0122

(* p <= 0.05)

HyRTS - OpenClover 11.994792
0.0000

(*** p <= 0.001)

HyRTS - STARTS 4.096633
0.0001

(*** p <= 0.001)

OpenClover - STARTS -7.898159
0.0000

(*** p <= 0.001)

Therefore, we conducted the Bonferroni tests, and the results are shown in Table 5.1. Each row

in the table shows if the differences in two RTS techniques is statistically significant. The symbols

below p-value shows the p-value visually with * for p<=0.05, ** for p <= 0.01, and *** for p <=

0.001. The results indicates that a) OpenClover had lower test suite size reduction compared to the

other techniques, b) STARTS selects more test cases than Ekstazi and HyRTS, and c) the test suite

reductions achieved by Ekstazi and HyRTS are not significantly different from each other.

The parametric test with Huynh-Feldt correction confirmed the significant effect of the within-

subject factor (i.e., RTS technique) on test suite size reduction (F = 40.11, df = 1.37, p < 0.000).

5.2 Reduction in End-to-end Time

Figure 5.3 shows the boxplots for the reduction in end-to-end time achieved by each of the

four tools on all the revisions that were considered in the study. It shows that the highest median

32

Figure 5.3: End-to-end Time Reduction Rate

and mean value of the end-to-end time reduction is achieved by Ekstazi (65.44%) and HyRTS

(59.40%), respectively. OpenClover achieved the lowest median end-to-end time reduction at

0.58%. Because the mean test suite reduction of STARTS is 2.89% higher than Ekstazi, the mean

value of end-to-end time reduction achieved by Ekstazi is 2.93% higher than STARTS.

However, these techniques do not guarantee a reduction in testing time. We observed that

STARTS, Ekstazi, and OpenClover achieved minus end-to-end time reduction in some revisions.

The values below zero indicate using RTS took a longer time than running the original test suite.

In particular, OpenClover spent a longer time than running the original test suite on 16 times more

revisions than STARTS. OpenClover’s official website [61] explains the limitation that the more

class files and test cases exist in the project, the worse OpenClover’s performance is in terms of the

testing time and memory usage. That is because the number of per-test coverage files generated by

OpenClover equals the number of class files multipled by the number of test cases.

Figure 5.4 shows the non-parametric test result based on end-to-end time reduction of the

four RTS techniques. The points of the RTE appear from OpenClover with the smallest (0.2206)

to HyRTS with the largest (0.5995) in the same order of test suite size reduction. We identified

33

Figure 5.4: Non-parametric Test Result with Time Reduction

that the end-to-end time reduction achieved by the four RTS techniques is statistically significant

because the p-value of Wald-Type statistic was 0.

Table 5.2: The Bonferroni Test Result with End-to-end Time Reduction

Comparison Difference p-value

Ekstazi - HyRTS -0.9092542
1.0000

(p > 0.05)

Ekstazi - OpenClover 67.4111792
0.0000

(*** p < 0.001)

Ekstazi - STARTS 2.5339409
1.0000

(p > 0.05)

HyRTS - OpenClover 68.3204334
0.0000

(*** p < 0.001)

HyRTS - STARTS 3.4431951
0.5416

(p > 0.05)

OpenClover - STARTS -64.8772382
0.0000

(*** p < 0.001)

Table 5.2 shows the result of the Bonferroni test conducted with end-to-end time reduction

achieved by the RTS techniques. Even though Figure 5.4 shows that the end-to-end time reduction

was STARTS < Ekstazi < HyRTS, Table 5.2 represents that the end-to-end time reductions of those

34

three techniques are actually not statistically different. On the other hand, OpenClover achieved a

statistically lower end-to-end time reduction than other techniques.

There were similarities and differences between the results of the parametric test and the non-

parametric test. We confirmed with a parametric test with Huynh-Feldt correction that there are

significant effect of the within-subject factor on end-to-end time reduction (F = 1143.64, df =

1.45, p < 0.0000). On the other hand, the pairwise comparisons show that the p-value of Ekstazi

and HyRTS pair is 0.547. That means the parametric test indicates that the end-to-end time re-

duction achieved by Ekstazi and HyRTS are statistically similar but different from STARTS and

OpenClover.

5.3 Safety and Precision Violation

Figures 5.5 and 5.7 show the safety and precision violations of the tools with respect to STARTS

and Ekstazi. We used STARTS and Ekstazi as baselines because they are considered to be the state-

of-art RTS techniques [54]. In both the figures, the three box plots with the symbol _S show the

violations computed with respect to STARTS. The three box plots with the symbol _E are viola-

tions computed with respect to Ekstazi.

Figure 5.5: Safety Violation

35

Figure 5.5 shows that the median safety violation values of the four RTS techniques is 0 but

there are many outliers. Considering that the mean value of test suite size reduction of the four RTS

techniques is 93.81%, 9.08 test cases are selected from each revision on average. That means the

safety violations of the RTS techniques increase by around 8.29% for every test case that should

have been selected but was not. The mean safety violation of STARTS is 0.87% with respect to

Ekstazi, which is the lowest safety violation among all the six violations. HyRTS achieved the best

test suite size reduction but has the highest safety violation. The mean safety violation of HyRTS is

6.38% higher than Ekstazi with respect to STARTS and 8.16% higher than STARTS with respect to

Ekstazi. OpenClover selects the most test cases, but OpenClover’s safety violation is 9.01% with

respect to STARTS and 2.61% with respect to Ekstazi. That means approximately 8% of test cases

that OpenClover selects are irrelevant to the code changes that STARTS and Ekstazi identified.

Figure 5.6: Non-parametric Test Result with Safety Violation

Figure 5.6 shows that the gap between the largest (0.5467 by HyRTS with respect to STARTS)

and the smallest (0.4481 by STARTS with respect to Ekstazi) RTE of the safety violation is less

than 0.1. Despite the small RTE gaps between the techniques, the Wald-Type statistic still gives

less than 0.05 p-value (4.2162523e-27).

36

Table 5.3: The Bonferroni Test Result with Safety Violation

Comparison Difference p-value

Ekstazi_S - HyRTS_S -6.37645289
1e-04

(*** p < 0.001)

HyRTS_S - OpenClover_S 7.61132727
0e+00

(*** p < 0.001)

Ekstazi_S - OpenClover_S 1.23487438
1e+00

(p > 0.05)

HyRTS_E - OpenClover_E 6.41737521
0e+00

(*** p < 0.001)

HyRTS_E - STARTS_E 8.15797851
0e+00

(*** p < 0.001)

OpenClover_E - STARTS_E 1.74060331
1e+00

(p > 0.05)

We conducted the Bonferroni test accordingly, and Table 5.3 shows the test result. The safety

violation of STARTS with respect to Ekstazi is the lowest among the six violations as Figure 5.6

shows. However, Table 5.3 present that the safety violation of STARTS is higher than HyRTS,

but the safety violation of STARTS is not statistically different from OpenClover with respect to

Ekstazi. This can be explained with the test suite size reduction. STARTS, being a static RTS tech-

nique, selects more test cases than dynamic RTS techniques. The parametric test with Huynh-Feldt

correction shows that there is a significant effect of the within-subject factor on safety violation of

RTS techniques with respect to both STARTS (F = 155.715, df = 2.56, p < 0.000) and Ekstazi (F =

94.75, df = 1.49, p < 0.000).

In Figure 5.7, the average precision violations of HyRTS with respect to both STARTS and

Ekstazi are both close to zero. HyRTS and Ekstazi select 4.10% and 2.89% fewer test cases than

STARTS. That can be explained by the observation that HyRTS and Ekstazi have not many outliers

and have low average values with respect to STARTS. OpenClover’s average precision violations

are the highest among all the violations (higher than 60%). The reason is that OpenClover’s third

quartile of precision violation is 100%. As we saw in the discussion of safety violation, the average

number of test cases selected by four RTS technique in each revision is 9.08. We observed that

OpenClover selects more than 18 test cases in 103 revisions. That means OpenClover selected

37

Figure 5.7: Precision Violation

two times more test cases than the average test case selection in 17.82% of total revisions. This

explains why there is a 100% precision violation. That is also shown in the test suite size reduction.

Figure 5.8: Non-parametric Test Result with Precision Violation

In Figure 5.8, the precision violations of OpenClover are the highest among all the violations

with respect to both STARTS and Ekstazi. The post-hoc test results in Table 5.4 shows that the

precision violations of OpenClover are statistically different from other techniques. Based on Fig-

38

Table 5.4: The Bonferroni Test Result with Precision Violation

Comparison Difference p-value

Ekstazi_S - HyRTS_S 0.81513884
1.0000

(p > 0.05)

HyRTS_S - OpenClover_S -60.80159504
0.0000

(*** p < 0.001)

Ekstazi_S - OpenClover_S -59.98645620
0.0000

(*** p < 0.001)

HyRTS_E - OpenClover_E -64.77200165
0.0000

(*** p < 0.001)

HyRTS_E - STARTS_E -10.16311570
0.0000

(*** p < 0.001)

OpenClover_E - STARTS_E 54.60888595
0.0000

(*** p < 0.001)

ure 5.8 and Table 5.4, the precision violation of HyRTS with respect to Ekstazi is statistically lower

than STARTS. The Huynh-Feldt correction confirmed that the precision violations with respect to

STARTS (F = 178.05, df = 1.07, p < 0.000) and Ekstazi (F = 167.46, df = 1.53, p < 0.000) have a

significant effect on the within-subject.

5.4 Fault Detection Ability

Figure 5.9: Fault Detection Ability

39

Figure 5.9 shows the boxplots for the fault detection ability scores obtained by running all the

test cases (RetestAll) and the test cases selected by the four tools. PIT ran successfully on 146

revisions out of 578 revisions, and a total of 30,354 mutants were generated by PIT.

PIT ran only on 25.26% of total revisions because of two reasons. First, 35.47% of the all

the revisions used in our study have files whose smart checksums changed between revisions. As

explained in Chapter 4.4, we conducted mutation testing only on the revisions that have changed

files. That means 64.53% of revisions were excluded from the mutation testing. Second, mutation

testing failed on some revisions due to the error saying that test failure exists even though there

was no test failure when running JUnit tests with the original test suite. This is an issue that

occasionally appear with PIT due to these causes listed here [62]: PIT configuration problem,

mismatched configuration between test and PIT, hidden order of test cases, and a compatibility

issue with PIT and JUnit. We were unable to determine the cause and resolve this issue because

the list only presents the most common causes, but there may be other reasons that cause PIT

failure.

The mean value of the fault detection ability of STARTS is 0.43% less than that of the original

test suite. Ekstazi and OpenClover achieved 0.10% and 0.47% less fault detection ability than

STARTS. That is because STARTS is a safe static RTS technique, and it selects more test cases

than dynamic RTS techniques. Safety violation shows a similar result. HyRTS, on the other

hand, killed only 12.25% of mutants. The safety violation of HyRTS is 16.62%, which is around

two times higher than Ekstazi and OpenClover’s safety violation with respect to STARTS. While

STARTS, Ekstazi, and OpenClover did not kill any mutants on some of the revisions, we observed

that HyRTS killed no mutants on the majority of revisions (80.82%). Unfortunately, HyRTS does

not provide a function in which files are determined as changed files, so we could not determine if

the problem is a result of misidentifying changed files or finding test dependencies. Even though

HyRTS computes smart checksums like Ekstazi and STARTS, Zhang [10] states that Ekstazi was

not open source at that time, so they implemented their own way to compute the smart checksum.

HyRTS is not open source, so we could not inspect the code.

40

Figure 5.10: Non-parametric Test Result with Fault Detection Ability

Figure 5.10 shows the non-parametric test result with the fault detection ability scores obtained

by running all the test cases (RetestAll) and the test cases selected by the four tools. The RTE

value of the fault detection ability of STARTS is 0.0038 lower than the original test suite. Ekstazi

and OpenClover achieved as high RTE as STARTS (less than 0.002 difference). Because the gap

between RetestAll, STARTS, Ekstazi, and OpenClover are small, it is difficult to identify their

differences in Figure 5.10. The p-value of Wald-Type statistic was 6.000201e-37, so we conducted

post-hoc test.

Table 5.5 shows the Bonferroni test result with fault detection ability. The table shows that

the fault detection ability achieved by HyRTS is statistically significant from other techniques.

Figure 5.10 also presents that HyRTS killed the smallest number of mutants. The parametric test

also shows that there are statistical differences existing in the fault detection ability achieved by

the RTS techniques (F = 57.24, df = 1.09, p < 0.000).

41

Table 5.5: Bonferroni Test Result with Fault Detection Ability

Comparison Difference p-value

Ekstazi - HyRTS 32.60689655
0

(*** p < 0.001)

Ekstazi - OpenClover 0.3862069
1

(p > 0.05)

Ekstazi - RetestAll -0.52413793
1

(p > 0.05)

Ekstazi - STARTS -0.08965517
1

(p > 0.05)

HyRTS - OpenClover -32.22068966
0

(*** p < 0.001)

HyRTS - RetestAll -33.13103448
0

(*** p < 0.001)

HyRTS - STARTS -32.69655172
0

(*** p < 0.001)

OpenClover - RetestAll -0.91034483
1

(p > 0.05)

OpenClover - STARTS -0.47586207
1

(p > 0.05)

RetestAll - STARTS 0.43448276
1

(p > 0.05)

5.5 Interaction Effects Between Program Characteristics and

Performance of RTS Techniques

In Section 4.1, we defined four program features that can potentially have interaction effects

with the performance of RTS techniques: total size in KLOC, total number of classes, percentage

of test classes over the total number of classes, and the percentage of classes that changed between

revisions. In this section, we analyze the relationship between those program features and three of

the metrics achieved by RTS techniques, test suite size reduction, end-to-end time reduction, and

fault detection ability. However, we do not analyze the safety and precision violation metrics in

this section because the fault detection ability is related to safety violations, and the amount of test

suite size reduction is related to precision violation [15].

We divided this section into four parts, one for each program feature.

42

5.5.1 Total Size in KLOC.

Figure 5.11: Test Suite Reduction per Subject

Test suite size reduction. Figure 5.11 depicts the test suite size reduction per subject. Ek-

stazi, STARTS, and HyRTS achieved higher test suite size reduction in projects with over 100

KLOC than in projects that have less than 100 KLOC. The difference of reduction achieved in the

projects between over 100 KLOC and less than 100 KLOC was biggest in STARTS (5.41%) and

smallest in HyRTS (2.36%). Because of that, the lines that represent STARTS, Ekstazi, and HyRTS

are barely visible on the subjects that have over 100 KLOC (Asterisk and Commons Collections)

than the rest of other subjects in Figure 5.11. The test suite reduction achieved by OpenClover

does not show a pattern with change in KLOC.

Note that the line graphs are stacked in the order of STARTS, Ekstazi, HyRTS, and Open-

Clover. Thus, if several techniques achieve the same reduction on specific revision, only the last

43

stacked line is visible on the graph. For example, revision 72 in Commons CLI and revision 48 in

Commons Imaging look like HyRTS is the only technique that achieved 0% test suite reduction.

However, STARTS, Ekstazi, and HyRTS ran all test cases on those revisions, but it looks like the

blue line is the only one achieved zero reduction because of how the order appears on the line

graph.

Figure 5.12: Two-way Interaction Between RTS Technique and Total Size in KLOC on Test Suite Size

Reduction

We can find two statistical results from the non-parametric test: (1) If there are statistical dif-

ferences in test suite size reduction where program sizes are small vs large, and (2) if an interaction

effect exists between total size in KLOC and the test suite size reduction of RTS techniques. The

p-values for the Wald-Type statistics were 3.729602e-02 and 3.064411e-02, respectively, over 0.05

in both results. Thus, the non-parametric test result indicates that there is no statistical interaction

effect between test suite size reduction and total size in KLOC.

The non-parametric test results showed that neither the main effect of total size in KLOC nor

the interaction effect between total size in KLOC and RTS technique on test suite size reduction

was statistically significant (i.e., p-values for the Wald-Type statistics were >= 0.05). The paramet-

44

ric between-subjects test for difference in test suite size reduction by total size in KLOC was also

not significant (F = 0.08, df = 1, p = 0.776). However, the interaction effect between total size in

KLOC and RTS technique on test suite size reduction was significant (F = 74.70, df = 1.37, p <

0.000).

As shown in Figure 5.12, STARTS, Ekstazi, and HyRTS achieved higher test suite size reduc-

tion in projects with over 100 KLOC than in projects that have less than 100 KLOC. In contrast,

OpenClover selected more test cases on projects with over 100 KLOC and fewer cases on projects

that had less than 100 KLOC.

Figure 5.13: End-to-end Time Reduction per Subject

End-to-end time reduction. Figure 5.13 shows the time reduction per subject. Ekstazi and

STARTS tend to reduce more time on the programs that have higher KLOC. Even though there is

an exception for Commons Net, Ekstazi reduced 18.31% more time on the subject with the largest

45

KLOC (Asterisk) than the smallest one (Commons CLI). Similarly, STARTS reduced 19.11%

more time on the subject with the largest KLOC. Hence, the lines that represent STARTS and

Ekstazi in Asterisk are mostly placed over 50%, while those lines appear even below zero in CLI

in Figure 5.13.

Our non-parametric test results showed that the end-to-end time reduction in the projects that

had less than 100 KLOC and the projects that had over 100 KLOC are statistically different. The

parametric between-subjects test for differences in the end-to-end time reduction by total size in

KLOC was statistically significant (F = 342.590, df = 1, p < 0.000). The interaction effect between

total size in KLOC and RTS technique on the end-to-end time reduction was significant (F =

180.282, df = 1.45, p < 0.000).

Figure 5.14: Two-way Interaction Between RTS Technique and Total Size in KLOC on End-to-end Time

Reduction

Figure 5.14 shows the pairwise comparison result based on the end-to-end time reduction

achieved by the four RTS techniques under different size in KLOC. The dots at the end of each

line represents the estimated marginal means of an average of three executions of end-to-end time

46

reduction achieved by RTS techniques when the total size in KLOC is large or small. The overall

pattern is similar in that RTS techniques tend to reduce more time on the programs that have less

KLOC. The p-values show that the time reduction of OpenClover is statistically lower than other

techniques in both over 100 KLOC and less than 100 KLOC.

Fault detection ability. The parametric test for the main effect of size in KLOC on faulty de-

tection ability was significant. But the interaction effect between size in KLOC and RTS technique

on fault detection ability was not significant. The parametric between-subjects test for differences

in test suite size reduction by the fault detection ability in KLOC was statistically significant (F =

14.676, df = 1, p < 0.000). The interaction effect between total size in KLOC and the fault detection

ability of RTS techniques was not statistically significant (F = 2.317, df = 1.09, p = 0.13).

Figure 5.15: Two-way Interaction Between RTS Technique and Total Size in KLOC on Fault Detection

Ability

Figure 5.15 depicts the pairwise comparison results with the total size in KLOC and the fault

detection ability. The y-axis shows an estimated marginal means based on the fault detection

abilities achieved by RTS techniques. The figure shows that the blue line that represents HyRTS

47

is placed much lower than other lines. The significance of fault detection ability of HyRTS was

0.003 to 0.016 compared to other techniques. That means HyRTS killed statistically less mutants

than STARTS, Ekstazi, and OpenClover. The yellow line for STARTS is not displayed well in

Figure 5.15 because the plot values of STARS and Ekstazi are almost identical.

5.5.2 Total Number of Classes

Test suite size reduction. The non-parametric test results showed that the main effect of total

number of classes on test suite size reduction was not statistically significant. The p-value for the

Wald-Type statistics was 5.184339e-01. The parametric between-subjects test for difference in test

suite size reduction by total number of classes was also not significant (F = 0.20, df = 1, p = 0.65).

While the interaction effect between total number of classes and RTS technique on test suite size

reduction was significant (F = 42.32, df = 1.37, p < 0.000).

Figure 5.16: Two-way Interaction Between RTS Technique and Total Number of Classes on Test Suite Size

Reduction

The pairwise comparison results of total number of classes and test suite size reduction is shown

in Figure 5.16. The figure shows the opposite result between OpenClover and STARTS, Ekstazi,

48

and HyRTS. OpenClover selects more test cases when the projects have a less total number of

classes while the other techniques select more test cases when the projects have more classes.

Interestingly, even though both total size in KLOC and the total number of classes are metrics

to measure the size of projects, the overall graphs of these two metrics regard to the test suite size-

reduction appear the opposite. This is because more classes in projects do not mean more lines of

code and vice versa.

End-to-end time reduction. OpenClover saves more time on the subjects that have fewer

classes. As Figure 5.13 shows, on Commons Collection, which has the second most number of

classes, OpenClover spends 93.63% longer time than running the original test suite. However, on

Commons Net, one of the subjects with the least number of classes, OpenClover reduced 65.98%

time. Even though Asterisk has the most number of classes, OpenClover achieved 1.52% time

reduction on Asterisk. This is because OpenClover is affected by the combination of the number

of classes and test cases.

The non-parametric test results showed that main effect of total number of classes and the inter-

action effect between total number of classes and RTS technique on the end-to-end time reduction

was statistically significant. The parametric between-subjects test for difference in end-to-end time

reduction by total number of classes was significant (F = 96.60, df = 1, p < 0.000). The interaction

effect between total number of classes and RTS technique on end-to-end time reduction was also

significant (F = 69.291, df = 1.45, p < 0.000).

Figure 5.17 shows the result of pairwise comparison based on total number of classes and end-

to-end time reduction of RTS techniques. The most noticeable difference between techniques is

that the orange line that represents OpenClover achieved significantly lower end-to-end time re-

duction than the other techniques. The significance values also represent that the time reduction

achieved by OpenClover is extremely different from STARTS, Ekstazi, and HyRTS in both small

and large projects in terms of total number of classes. We also found that STARTS achieved statis-

tically less time reduction than Ekstazi and HyRTS on the projects that have more total number of

classes.

49

Figure 5.17: Two-way Interaction Between RTS Technique and Total Number of Classes on End-to-end

Time Reduction

Fault detection ability. The non-parametric test results showed that the main effect of to-

tal number of classes was significant but the interaction effect between total number of classes

and RTS technique on the fault detection ability was not statistically significant. The parametric

between-subjects test for differences in fault detection ability by total number of classes was sig-

nificant (F = 47.68, df = 1, p < 0.000). However, the interaction effect between total number of

classes and RTS technique on fault detection ability was not significant (F = 1.29, df = 1.09, p =

0.26).

5.5.3 Percentage of Test Classes in the Total Number of Classes

Test suite size reduction. We found that the main effect of the percentage of test classes in

the total number of classes and the interaction effect between the percentage of test classes and

RTS technique on test suite size reduction were statistically significant. The parametric between-

subjects test for difference in test suite size reduction by the percentage of test classes was signif-

icant (F = 66.88, df = 1, p < 0.000). Also, the interaction effect between the percentage of test

50

classes and RTS technique on test suite size reduction was significant (F = 97.23, df = 1.37, p <

0.000).

Figure 5.18: Two-way Interaction Between RTS Technique and Percentage of Test Classes on Test Suite

Size Reduction

The parametric test result is an agreement with the non-parametric test result. The pairwise

comparison based on the percentage of test classes and test suite size reduction is presented in

Figure 5.18. The figure shows that RTS techniques tend to achieve higher test suite size reduction

on the projects that have a lower percentage of test classes in the total number of classes. Especially,

OpenClover has the most dramatic difference in test suite size reduction in the projects that have a

higher percentage of test classes and the lower percentage of test classes.

End-to-end time reduction. The non-parametric test results showed that both the main effect

of percentage of test classes and the interaction effect between percentage of test classes and RTS

technique on the end-to-end time reduction were statistically significant. The parametric between-

subjects test for differences in end-to-end time reduction by the percentage of test classes was also

significant (F = 1208.88, df = 1, p < 0.000). The interaction effect between the percentage of test

51

classes and RTS technique on the end-to-end time reduction was also significant (F = 497.723, df

= 1.45, p < 0.000).

Figure 5.19: Two-way Interaction Between RTS Technique and Percentage of Test Classes on End-to-end

Time Reduction

Figure 5.19 shows the result of pairwise comparison between the percentage of test classes in

the total number of classes and the end-to-end time reduction of RTS techniques. The overall trend

is similar across four RTS techniques that higher time reduction in the projects that have a lower

percentage of test cases than the projects that have a higher percentage of test cases. This pattern

can be explained with Figure 5.18 that RTS techniques select more test cases in the projects that

has higher percentage of test classes.

Fault detection ability. We found that both the main effect of the percentage of test classes

and the interaction effect between the percentage of test classes and RTS technique on the fault

detection ability were statistically significant. The parametric between-subjects for difference in

fault detection ability by the percentage of test classes in the total number of classes was significant

52

(F = 98.38, df = 1, p < 0.000). The interaction effect between the percentage of test classes and

RTS technique on the fault detection ability was significant (F = 6.19, df = 1.09, p = 0.01).

Figure 5.20: Two-way Interaction Between RTS Technique and Percentage of Test Classes on Fault Detec-

tion Ability

However, the parametric test indicates a statistical significance between RTS techniques where

projects have a high percentage of test classes versus a low percentage of test classes. Figure 5.20

depicts the result of the pairwise comparisons between the percentage of test classes and fault

detection ability. The figure shows a similar pattern between RTS techniques that higher fault de-

tection ability on the projects that have higher test classes than lower test classes. The significance

values show that HyRTS achieved statistically lower fault detection ability than other techniques

in the overall projects regardless of the percentage of test classes in the project.

53

5.5.4 Percentage of Changed Classes between Revisions.

Figure 5.21 is a distribution chart showing the percentage of revisions based on the percentage

of files changed in each revision. The categorization is used as a factor to observe the relationship

between the percentage of changed files and performance of RTS techniques.

Figure 5.21: Distribution of Changes in Subjects

First, we considered the revisions where no files changed (category C1) and those where at

least one file changed. This differentiation is needed because RTS techniques should not select any

test case when no files are changed. Then, we analyzed the distribution of revisions where one or

more files were changed. 28.35% of revisions (category C2) have less than 1% changed files, and

was the next highest percentage after the category where no files changed. The revisions that have

multiple changed files are grouped in one category called C3. We did not divide the revisions in

the category C3 further because C3 has only 5% of the total revisions. Statistically, the sample size

in C3 is already quite small.

Test suite size reduction. Figure 5.22 shows the relationship between the test suite reduction

and the percentage of changes over the total number of files. The category C1 includes the revisions

54

that have no file changes, and the bar chart shows that the test suite reductions achieved by all four

RTS techniques are not 100% in this category. That is because the RTS techniques used in our

study are designed to select test cases that are (1) relevant to the code changes and (2) the test

cases that were newly added in the revision. In the category C1, OpenClover selected and ran

10.63% more test cases that were ignored by STARTS, Ekstazi, and HyRTS. We observed that

the revisions, such as revision 46 in Commons CLI, revision 73 in Commons Collections, and

multiple revisions in Commons Imaging, do not have changed files, but the total number of test

cases is increased. That means new test cases were added to those revisions. We confirmed that all

four RTS techniques selected test cases on those revisions.

Figure 5.22: Number of Changed Files and Test Suite Reduction

Overall, RTS techniques run more test cases as there are more changed class files. Compared

to C1, STARTS selected 15.56% more test cases in the category C2, while Ekstazi and HyRTS

select 6.98% and 2.91% more test cases. OpenClover, on the other hand, reduces more test cases

than other RTS techniques in the revisions that have more changed files. In the category C3 where

there are multiple changed files, OpenClover reduces from 10.62% more test cases than STARTS.

55

We observed that test suite reduction is also affected by the type of changed files in addition to

the number of changed files. That means RTS techniques do not necessarily select fewer test cases

because fewer files are changed. For example, revision 99 in Commons CLI has one changed file

adding annotations (override and deprecated) on the existing methods, and 73.21% test cases are

selected on average for all RTS techniques.

The non-parametric test results showed that both the main effect of the percentage of changed

classes and the interaction effect between the percentage of changed classes and RTS technique

on test suite size reduction were statistically significant. The parametric between-subjects test for

difference in test suite reduction by the percentage of changed classes was significant (F = 161.37,

df = 2, p < 0.000). The interaction effect between the percentage of changed classes and RTS

technique on test suite size reduction was also significant (F = 23.03, df = 2.73, p < 0.000).

Figure 5.23: Two-way Interaction Between RTS Technique and Percentage of Changed Classes on Test

Suite Reduction

The result of parametric test based on the percentage of changed files between revisions and the

test suite size reduction is shown in Figure 5.23. The trend of the figure is similar to the bar chart

56

in Figure 5.22 that RTS techniques select more test cases as there are more changed class files. The

test suite size reductions achieved by STARTS, Ekstazi, and HyRTS are statistically not different

while OpenClover achieved lower test suite size reduction than other techniques on the revisions

that have no changed files. OpenClover, however, achieved higher test suite size reduction than

STARTS and statistically similar test suite size reduction to Ekstazi and HyRTS in the category

C3.

Figure 5.24: Number of Changed Files and Time Reduction

End-to-end time reduction. In Figure 5.24, we show how much time was reduced compared

to running the original test suite when there are a different number of changes. Figure 5.24 shows

that the result is similar to the cumulative results from the four RTS techniques (Figure 5.3) that

HyRTS and OpenClover achieved the highest and lowest time reduction, respectively. As expected,

RTS tools save more time when there are few file changes because they select and run more test

cases when there are more changed files and impacted test cases.

The non-parametric test results showed that both the main effect of the percentage of changed

classes and the interaction effect between the percentage of changed classes and RTS technique on

57

the end-to-end time reduction were statistically significant. The parametric between-subjects test

for difference in the end-to-end time reduction by the percentage of changed classes was significant

(F = 72.48, df = 2, p < 0.000). The interaction effect between the percentage of changed classes

and RTS technique on the end-to-end time reduction was also significant (F = 19.31, df = 2.89, p

< 0.000).

Figure 5.25: Two-way Interaction Between RTS Technique and Percentage of Changed Classes in Revisions

on End-to-end Time Reduction

The parametric test result shows the details of the differences in time reduction between tech-

niques. Figure 5.25 represents the result of pairwise comparison for the interaction between per-

centage of changed classes and the end-to-end time reduction achieved by the four RTS techniques.

The figure depicts that the overall trend is similar to the test suite size reduction as Figure 5.25

shows. The figure also shows that OpenClover achieved significantly lower time reduction than

other techniques in any category.

Fault detection ability. The non-parametric test results showed that the main effect of the

percentage of changed classes was statistically significant, while the interaction effect between the

58

percentage of changed classes and RTS technique on the fault detection ability was not statistically

significant. The parametric between-subjects test for difference in the fault detection ability by the

percentage of changed classes was significant (F = 7.01, df = 1, p = 0.01). The interaction effect

between the percentage of changed classes and RTS technique on the fault detection ability was

not significant (F = 1.54, df = 1.09, p = 0.22).

5.6 Discussion

Our empirical study results are in agreement with results from the studies conducted by other

researchers [10, 18]. Zhang [10] shows that HyRTS achieved higher test suite size reduction and

time reduction than Ekstazi on average in their empirical study. The study conducted by Zhu et

al. [18] demonstrates that not every RTS technique saves time. Running OpenClover sometimes

took a longer time than running the original test suite [18]. Our empirical study results demonstrate

similar results. Overall, HyRTS selects the least number of test cases among the four techniques

(Section 5.1), and the highest mean value of the end-to-end time reduction is achieved by HyRTS

at 59.40% (Section 5.2). OpenClover spent 93.63% longer time than running the original test suite

of the Commons Collection subject (Section 5.5.2).

5.7 Threats to Validity

Internal Validity

These threats are related to the implementations used in the study. We followed the manuals

that the researchers provide on their official websites. The process of conducting the empirical

study was fully automated and carefully reviewed. We investigated why OpenClover selects 15%

more test cases than the rest of other tools. We could not inspect all the changes, but we manually

inspected some of the suspicious revisions and found two reasons why OpenClover selects more

test cases. First, computing smart checksums misses the identification of some changed files and

this can potentially change debug information. We found that STARTS, Ekstazi, and HyRTS do

not identify some of the code changes (e.g., static enum A to enum A). We assumed that STARTS,

59

Ekstazi, and HyRTS compute smart checksums in the same way. STARTS reuses smart checksum

computation code from Ekstazi. Second, OpenClover has a known bug [18] that selects any test

cases with certain annotations. Furthermore, Zhu et al. [18] show that OpenClover has several

safety issues on finding test dependencies.

External Validity

We used five publicly available open source projects as subjects, which can lead to a lack of

generalizability to other programs. To reduce the threat, we used different programs in terms of the

number of test cases and the number of lines of code. We selected different revisions than other

studies to avoid bias.

The fault detection results may be different if we used other mutation tools. Moreover, instead

of using mutation faults, one could use real faults that were reported for the revisions. Thus, the

fault detection results may not generalize to real faults. However, studies [48] have shown the

usefulness of mutation faults in software engineering experiments.

Construct Validity

There are other metrics that can be used to measure time reduction, such as test case selection

time, test execution time, and end-to-end test time. The use of the metric end-to-end test time can

be a threat to construct validity. However, we used it because Ekstazi, HyRTS, and OpenClover

do not output only the test selection time or only the test execution time. Having a gold standard

is necessary for correctly using safety and precision violation formulas. If neither tool is safe (or

precise), the results can be misleading.

60

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Regression testing is an essential but expensive software engineering activity. Researchers

have developed many regression test selection techniques to reduce the regression testing time.

Researchers have empirically evaluated RTS techniques, but each of these evaluations were per-

formed under different conditions.

Our research goal was to compare four recent Java-based RTS techniques in terms of the

amount of test suite size reduction, end-to-end time reduction, safety, precision, and fault detection

ability. We also investigated program factors that affect the performance of the RTS techniques,

which can help practitioners determine the most appropriate technique for their specific require-

ments. To achieve this goal, we ran RTS techniques and analyzed the results to answer our research

questions.

We found that the average test suite size reduction varies from 86.14% to 98.13%. The test suite

size reductions achieved by HyRTS and Ekstazi are statistically similar, while OpenClover selects

significantly more test cases than the three other RTS techniques. Sometimes the RTS techniques

take a longer time than running the original test suite, but the average end-to-end time reduction of

four RTS techniques was 40.49%. HyRTS was the least safe RTS technique with respect to both

STARTS and Ekstazi, while the safety violations achieved by STARTS, Ekstazi, and OpenClover

were statistically not different. As OpenClover selected the largest number of test cases, it had

the highest precision violation. HyRTS achieved the lowest fault detection ability while STARTS,

Ekstazi, and OpenClover killed as many mutants as running the original test suite.

We used total program size in KLOC, the total number of classes, the percentage of test classes

in the total number of classes, and the percentage of changed classes as program characteristics to

explain which of them influence the performance of RTS techniques. We found that OpenClover

61

has an opposite pattern from other techniques related to the test suite size reduction. For example,

STARTS, EKstazi, and HyRTS achieve higher test suite size reduction in the subjects that have

over 100 KLOC than less than 100 KLOC, while OpenClover selects more test cases in the subjects

that have over 100 KLOC. OpenClover in general selects more test cases than other techniques but

selected less test cases on the programs that have fewer test classes. HyRTS killed relatively fewer

mutants than other techniques regardless of the number of changed files.

We also conducted statistical tests to analyze the empirical study results. These results often

show similar results that we can expect from the plots of the metrics achieved with RTS techniques

while it shows even further detailed information. For example, the Bonferroni test results show

that the test suite size reduction achieved by STARTS is statistically lower than Ekstzi and HyRTS.

Statistical test results also provide analyses that were not intuitively shown on the plots. Because

there are many outliers in safety violations, it is not easy to compare the techniques. We found that

HyRTS achieved higher safety violations than Ekstazi and OpenClover with respect to STARTS

while STARTS, Ekstazi, and OpenClover achieved statistically similar safety violations.

In conclusion, Ekstazi performed the best in all the metrics out of the four techniques, espe-

cially when the program size is over 100 KLOC. OpenClover should be avoided if an expectation

of the RTS technique is related to the end-to-end time reduction.

6.2 Future Work

Our empirical evaluation involves one static and three dynamic RTS techniques. Future work

could evaluate other Java-based techniques to derive a clear conclusion regarding static versus

dynamic techniques. Furthermore, several machine learning-based RTS techniques have been de-

veloped recently, which emphasize the selection of fewer test cases as the main objective rather

than considering the safety of test selection [8]. Thus, comparing the currently widely used tech-

niques with machine learning-based RTS techniques will be useful. Empirical evaluations can be

performed for tools across different programming languages.

62

In our empirical study, we used five open-source Java projects as subjects. A possible exten-

sion is to use more subjects and revisions to get a better general conclusions. Comparing RTS

techniques with real industrial programs will be also useful.

During the study, we found that RTS techniques have unexpected compatibility issues with

some open-source projects. Also, one or more RTS techniques had build failures on several re-

visions even though the original test suite ran successfully. The future work can measure the

generality of RTS techniques.

We considered four factors while determining their impact on the performance of RTS tech-

niques. There are additional factors that can be worth investigating. For example, our result(5.5.4)

shows that the type of changes affects the test suite size reduction. Therefore, analyzing the per-

formance of RTS techniques based on the type of changes in revisions, such as adding new test

cases, adding new parameters, modifying conditions can lead to interesting results.

63

Bibliography

[1] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski, and

John Micco. Taming Google-Scale Continuous Testing. In 39th International Conference on

Software Engineering: Software Engineering in Practice Track, pages 233–242. IEEE, 2017.

[2] Shin Yoo and Mark Harman. Regression Testing Minimization, Selection and Prioritization:

A Survey. Software Testing, Verification and Reliability, 22(2):67–120, 2012.

[3] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. Prioritizing Test

Cases for Regression Testing. IEEE Transactions on Software Engineering, 27(10):929–948,

2001.

[4] Gregg Rothermel and Mary Jean Harrold. Empirical Studies of A Safe Regression Test

Selection Technique. IEEE Transactions on Software Engineering, 24(6):401–419, 1998.

[5] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. An Empirical Study

of the Effects of Minimization on the Fault Detection Capabilities of Test Suites. In Interna-

tional Conference on Software Maintenance, pages 34–43. IEEE, 1998.

[6] Owolabi Legunsen, August Shi, and Darko Marinov. STARTS: STAtic Regression Test Se-

lection. In 32nd International Conference on Automated Software Engineering (ASE), pages

949–954. IEEE, 2017.

[7] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and Darko Mari-

nov. An Extensive Study of Static Regression Test Selection in Modern Software Evolution.

In 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 583–594, 2016.

[8] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legun-

sen. Reflection-Aware Static Regression Test Selection. Conference on Object-Oriented

Programming, Systems, Languages, and Application, 3:1–29, 2019.

64

[9] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical Regression Test Selection

with Dynamic File Dependencies. In International Symposium on Software Testing and Anal-

ysis, pages 211–222, 2015.

[10] Lingming Zhang. Hybrid Regression Test Selection. In 40th International Conference on

Software Engineering (ICSE), pages 199–209. IEEE, 2018.

[11] Openclover. https://openclover.org/ (Accessed 2019-04-19).

[12] Filippos I. Vokolos and Phyllis G. Frankl. Pythia: A regression test selection tool based on

textual differencing. In Reliability, Quality and Safety of Software-Intensive Systems, pages

3–21. Springer, 1997.

[13] Quinten David Soetens and Serge Demeyer. ChEOPSJ: Change-Based Test Optimization. In

Euromicro Conference on Software Maintenance and Reengineering, pages 535–538, 2012.

[14] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. Balancing

Trade-Offs in Test-Suite Reduction. In 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 246–256, 2014.

[15] Emelie Engström, Mats Skoglund, and Per Runeson. Empirical Evaluations of Regression

Test Selection Techniques: A Systematic Review. In 2nd ACM-IEEE International Sympo-

sium on Empirical Software Engineering and Measurement, pages 22–31, 2008.

[16] John Bible, Gregg Rothermel, and David S Rosenblum. A Comparative Study of Coarse-and

Fine-Grained Safe Regression Test-Selection Techniques. ACM Transactions on Software

Engineering and Methodology (TOSEM), 10(2):149–183, 2001.

[17] Todd L Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg Rothermel. An

Empirical Study of Regression Test Selection Techniques. ACM Transactions on Software

Engineering and Methodology (TOSEM), 10(2):184–208, 2001.

65

[18] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. A Framework for

Checking Regression Test Selection Tools. In 41st International Conference on Software

Engineering (ICSE), pages 430–441. IEEE, 2019.

[19] Gregg Rothermel and Mary Jean Harrold. A Safe, Efficient Regression Test Selection Tech-

nique. ACM Transactions on Software Engineering and Methodology (TOSEM), 6(2):173–

210, 1997.

[20] Quinten David Soetens, Serge Demeyer, Andy Zaidman, and Javier Pérez. Change-Based

Test Selection: An Empirical Evaluation. Empirical Software Engineering, 21(5):1990–2032,

2016.

[21] Rafaqut Kazmi, Dayang N.A. Jawawi, Radziah Mohamad, and Imran Ghani. Effective Re-

gression Test Case Selection: A Systematic Literature Review. ACM Computing Surveys

(CSUR), 50(2):1–32, 2017.

[22] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. Predictive Test

Selection. In 41st International Conference on Software Engineering: Software Engineering

in Practice (ICSE-SEIP), pages 91–100. IEEE, 2019.

[23] Ahmet Celik, Young Chul Lee, and Milos Gligoric. Regression Test Selection for TizenRT.

In 26th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 845–850, 2018.

[24] Mary Jean Harrold and Mary Lou Soffa. Interprocedual Data Flow Testing. ACM SIGSOFT

Software Engineering Notes, 14(8):158–167, 1989.

[25] Hareton KN Leung and Lee White. A Study of Integration Testing and Software Regression

at the Integration Level. In Conference on Software Maintenance, pages 290–301. IEEE,

1990.

66

[26] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima. Class

Firewall, Test Order, and Regression Testing of Object-oriented Programs. Journal of Object-

Oriented Programming, 8(2):51–65, 1995.

[27] Gregg Rothermel and Mary Jean Harrold. Analyzing Regression Test Selection Techniques.

IEEE Transactions on Software Engineering, 22(8):529–551, 1996.

[28] Yih-Farn Chen, David S Rosenblum, and Kiem-Phong Vo. TestTube: A System for Selective

Regression Testing. In 16th International Conference on Software Engineering, pages 211–

220. IEEE, 1994.

[29] David Rosenblum and Gregg Rothermel. A Comparative Study of Regression Test Selection

Techniques. In 2nd International Workshop on Empirical Studies of Software Maintenance.

IEEE Computer Society Press, 1997.

[30] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression test selection for C++

software. Software Testing, Verification and Reliability, 10(2):77–109, 2000.

[31] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso, Maikel

Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. Regression Test Selec-

tion for Java Software. ACM Sigplan Notices, 36(11):312–326, 2001.

[32] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling Regression Testing to Large

Software Systems. ACM SIGSOFT Software Engineering Notes, 29(6):241–251, 2004.

[33] Feng Lin, Michael Ruth, and Shengru Tu. Applying Safe Regression Test Selection Tech-

niques to Java Web Services. In International Conference on Next Generation Web Services

Practices, pages 133–142. IEEE, 2006.

[34] Guoqing Xu and Atanas Rountev. Regression Test Selection for AspectJ Software. In 29th

International Conference on Software Engineering (ICSE’07), pages 65–74. IEEE, 2007.

67

[35] Lee J White. A Firewall Approach for Regression Testing of Object-Oriented Software. 10th

Annual Software Quality Week, 1997.

[36] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, and Ophelia Chesley. Chianti: A Tool

for Change Impact Analysis of Java Programs. In 19th annual ACM SIGPLAN conference

on Object-Oriented Programming, Systems, Languages, and Applications, pages 432–448,

2004.

[37] Jianjun Zhao, Tao Xie, and Nan Li. Towards Regression Test Selection for AspectJ Programs.

In 2nd Workshop on Testing Aspect-Oriented Programs, pages 21–26, 2006.

[38] Yanping Chen, Robert L Probert, and D Paul Sims. Specification-Based Regression Test

Selection with Risk Analysis. In Conference of the Centre for Advanced Studies on Collabo-

rative Research, page 1, 2002.

[39] Quinten David Soetens, Serge Demeyer, and Andy Zaidman. Change-Based Test Selection

in the Presence of Developer Tests. In 17th European Conference on Software Maintenance

and Reengineering, pages 101–110. IEEE, 2013.

[40] Simone Romano, Giuseppe Scanniello, Giuliano Antoniol, and Alessandro Marchetto. SPIR-

ITuS: A SimPle Information Retrieval regressIon Test Selection approach. Information and

Software Technology, 99:62–80, 2018.

[41] Maral Azizi and Hyunsook Do. ReTEST: A Cost Effective Test Case Selection Technique

for Modern Software Development. In 29th International Symposium on Software Reliability

Engineering (ISSRE), pages 144–154. IEEE, 2018.

[42] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. Evaluating Regression

Test Selection Opportunities in a Very Large Open-source Ecosystem. In 29th International

Symposium on Software Reliability Engineering (ISSRE), pages 112–122. IEEE, 2018.

[43] Gregg Rothermel and Mary Jean Harrold. Experience with Regression Test Selection. Em-

pirical Software Engineering, 2(2):178–188, 1997.

68

[44] Ben Fu, Sasa Misailovic, and Milos Gligoric. Resurgence of Regression Test Selection for

C++. In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST),

pages 323–334. IEEE, 2019.

[45] Pavan Kumar Chittimalli and Mary Jean Harrold. Regression Test Selection on System Re-

quirements. In 1st India Software Engineering Conference, pages 87–96, 2008.

[46] Mary Jean Harrold, James A Jones, and Gregg Rothermel. Empirical Studies of Control

Dependence Graph Size for C Programs. Empirical Software Engineering, 3(2):203–211,

1998.

[47] Mary Jean Harrold, David Rosenblum, Gregg Rothermel, and Elaine Weyuker. Empirical

Studies of a Prediction Model for Regression Test Selection. IEEE Transactions on Software

Engineering, 27(3):248–263, 2001.

[48] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is Mutation an Appropriate Tool

for Testing Experiments? In 27th International Conference on Software Engineering, pages

402–411. ACM, 2005.

[49] Clover 4 Test Optimization. https://confluence.atlassian.com/clover/

about-test-optimization-169119919.html/ (Accessed 2019-04-19).

[50] Emelie Engström, Per Runeson, and Mats Skoglund. A Systematic Review on Regression

Test Selection Techniques. Information and Software Technology, 52(1):14–30, 2010.

[51] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen. An Empirical Study on Object-

Oriented Metrics. In International software metrics symposium, pages 242–249. IEEE, 1999.

[52] Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation Testing.

IEEE Transactions on Software Engineering, 37(5):649–678, 2010.

[53] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos Malevris,

and Yves Le Traon. How effective are mutation testing tools? An empirical analysis of Java

69

mutation testing tools with manual analysis and real faults. Empirical Software Engineering,

23(4):2426–2463, 2018.

[54] Mohammed Nayef Al-Refai. Towards Model-Based Regression Test Selection. PhD thesis,

Colorado State University. Libraries, 2019.

[55] Kimihiro Noguchi, Yulia R Gel, Edgar Brunner, and Frank Konietschke. nparLD: An R Soft-

ware Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments.

Journal of Statistical Software, 50(12), 2012.

[56] Michael G Akritas and Edgar Brunner. A Unified Approach to Rank Tests for Mixed Models.

Journal of Statistical Planning and Inference, 61(2):249–277, 1997.

[57] Abhik Ghosh, Abhijit Mandal, Nirian Martín, and Leandro Pardo. Influence Analysis of

Robust Wald-type Tests. Journal of Multivariate Analysis, 147:102–126, 2016.

[58] John Ludbrook. Multiple Comparison Procedures Updated. Clinical and Experimental Phar-

macology and Physiology, 25(12):1032–1037, 1998.

[59] YH Chan. Biostatistics 102: Quantitative Data-Parametric & Non-Parametric Tests. blood

Press, 140(24.08):79, 2003.

[60] Thom Baguley. An Introduction to Sphericity. Retrieved September, 1:2008, 2004.

[61] Open clover user guide. http://openclover.org/doc/manual/4.2.0/ant--coverage-recorders.

html (Accessed 2019-06-03).

[62] PITest. https://pitest.org/ (Accessed 2019-07-08).

70

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Questions
	Contributions
	Organization

	Related Work
	Evolution of RTS Techniques
	Previous Empirical Evaluations of RTS techniques

	Background
	Ekstazi
	STARTS
	HyRTS
	OpenClover

	Research Design
	Evaluation Metrics
	Subject Selection
	RTS Tool Execution
	Mutation Testing
	Data Collection and Visualization
	Statistical Data Analysis

	Results and Discussion
	Reduction in Test Suite Size
	Reduction in End-to-end Time
	Safety and Precision Violation
	Fault Detection Ability
	Interaction Effects Between Program Characteristics and Performance of RTS Techniques
	Total Size in KLOC.
	Total Number of Classes
	Percentage of Test Classes in the Total Number of Classes
	Percentage of Changed Classes between Revisions.

	Discussion
	Threats to Validity

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

