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Abstract: Fused deposition modeling (FDM), as one of the additive manufacturing processes, is
known for strong layer adhesion suitable for prototypes and end-use items. This study used a multiple
regression model and statistical analysis to explore the dimensional accuracy of FDM objects. Factors
such as inclination angle, layer thickness, support space, and raster angle were examined. Machine
learning models (Gaussian process regression (GPR), support vector machines (SVM), and artificial
neural network (ANN)) predicted dimensions using 81 datapoints. The mean squared dimensional
error (MSDE) between the measured and designed surface profiles was selected as an output for
the dimensional accuracy. Support spacing, layer thickness, and raster angle were determined to be
statistically significant, and all factors were confirmed as significant predictors. The coefficients of
determination for multiple linear regression, GPR, SVM, and ANN models were 76%, 98%, 93%, and
99%, respectively. The mean absolute errors (MAEs)—errors between the measured and the predicted
MSDEs—were 0.020 mm and 0.034 mm, respectively, for GPR and SVM models. The MAEs for ANN
models were 0.0055 mm for supporting cases and 2.1468 × 10−5 mm for non-supporting cases.

Keywords: fused deposition modeling; multiple regression model; ANOVA; artificial neural network

1. Introduction

Additive manufacturing (AM) systems have undergone rapid advancements in recent
decades, garnering significant research interest and widespread media attention. AM
technology has demonstrated immense potential in the production of highly valuable
and intricate products and parts. This manufacturing process involves the layer-by-layer
addition of materials, utilizing the geometry directly obtained from computer-aided design
(CAD) models [1–3]. The ability to create customized and complex objects through additive
manufacturing opens up new opportunities for the manufacturing industry, enabling the
production of individually tailored products with enhanced functionality and design [4–6].
In recent times, there has been notable progress in the utilization and advancement of
various AM processes, encompassing a wide range of techniques and materials, with a
particular focus on polymers [7]. Moreover, the extensive range of applications offered
by additive manufacturing plays a pivotal role in driving the remarkable growth of the
associated market. This is attributed to the capability of additive manufacturing to cater to
diverse sectors within the manufacturing industry, including household electrical appli-
ances, aerospace, automotive, sportswear, bio/medical devices, integrated circuit boards,
the food industry, etc. [8–14].

AM processes widely used are material jetting, vat photopolymerization, powder bed
fusion, material and binder jetting, and material extrusion. The material jetting process
uses the multijet printing (MJP) technique that uses piezo printhead technology to deposit
materials layer by layer. MJP is resin-based 3D printing, and UV-curable resins and
waxes, such as acrylates, epoxies, polylactide, polycaprolactone, etc., are used in the MJP
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technique. The vat photopolymerization process uses stereolithography (SLA) and digital
light processing (DLP). SLA uses a UV radiation beam to solidify photo resin layers on a
vat of liquid resin. DLP uses light projectors below the resin and projects an entire layer
at a time using an array of micrometer-sized mirrors. SLA and DLP are resin-based 3D
printings as well, and UV-curable resins, waxes, and resins with photo-active monomers,
such as ABS, acrylics, epoxides, polycaprolactone, poly lactic-co-glycolic acid, etc., are
used. The power bed fusion process applies the selective laser sintering (SLS) technique
that uses a laser beam or sintering to solidify polymer powder particles layer by layer.
Compacted fine powders or thermoplastics materials, such as nylon, polycaprolactone,
polyvinyl alcohol, polylactide, etc., are used. The material extrusion process uses the
fused deposition modeling (FDM) method, and a molten material via a nozzle, such as a
polymer, is deposited layer by layer to create a 3D product. Thermoplastics and polymers,
such as ABS, polylactic acid (PLA), polycaprolactone (PCL), polyethylene, nylon, etc., are
used [4,5,8,15].

FDM technology is a representative technique of material extrusion. It melts ther-
moplastics and extrudes melted material via a nozzle. FDM is becoming more attractive
for 3D printing with increasing applicable material in various fields. FDM parts exhibit
good layer adhesion and strength, making them suitable for functional prototypes and
end-use parts. The technology also offers design flexibility, allowing for the creation of
complex geometries and the integration of features like threads and hinges. Additionally,
FDM is known for its speed in producing larger parts. Along with the increase in the use
of FDM, the result prediction, such as dimensional accuracy and surface quality, is also
gaining a lot of attention. FDM can easily be applied for all of these; however, predicting the
printing result is one of the main challenges in FDM because the printing parameters and
the conditions are enormous. For example, various printing parameters, such as inclination
angle, layer thickness, support spacing, and raster angle, should be considered before
printing as well as printing conditions like printing temperature, printing speed, and fill
density [4,5,8,16,17].

Researchers have introduced and released the dimensional accuracy of parts based on
polymer materials extracted using FDM. Chang and Huang [18] investigated the accuracy
of an FDM model with various elements of transmission machinery and differing filament
diameter. Therefore, they considered profile error and extruding apertures as two sub-
stantial quality factors. An original image measurement method for investigating profile
error using a series of standard cylinders laid on the contour of the part was proposed,
and the effects of extruding apertures on model accuracies, such as contour width, contour
depth, part raster width, and raster angle, were analyzed using the Taguchi method. From
the results, the contour width is the important factor affecting profile error and aperture
area. Saqid and Urbanic [19] studied the impact of geometric forms along with process
parameters on part accuracy for the FDM process. A general factorial design, with simple
geometric shapes, including thick-wall and thin-wall features, was developed, and three
response variables (perpendicularity, cylindricity, and flatness) were measured to inves-
tigate accuracy. The effects of process parameters, such as the position of the part in the
work envelope, layer thickness, and orientation of the test models, were investigated. They
proposed that the geometry and feature interfaces affected the accuracy more than the
process parameter. Akbas et al. [20] investigated the effect of the nozzle temperature and
feed rates on the dimensions of an FDM part made of ABS and PLA experimentally and
numerically. An increase in the feed rate resulted in a reduction in strip width. Furthermore,
when evaluating the effect of nozzle temperature and feed rate on strip width, it was found
that the measurement positions had a more significant influence. The numerical model
accurately predicted the experimental data, exhibiting a high level of agreement. However,
some disparities were noted at elevated feed rates and nozzle temperatures. Park et al. [21]
investigated the dimensional accuracy and surface characteristics of different areas in
3D-printed dental casts made with various 3D printing methods. From the superimposing
analysis, it was observed that FDM exhibited more systematic deviations compared to DLP,
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PolyJet, and SLA techniques. The three-dimensional deviations at each cylinder location
were found to be the lowest in the left canine region, and deviations increased as the
distance from this specific site increased in all the studied groups.

Machine learning technology has experienced notable progress in recent years, primar-
ily attributed to the availability of extensive datasets, enhanced computational capabilities,
and refined algorithms. Machine learning offers several advantages such as its proficiency
in handling voluminous and intricate datasets, its capability to automate decision-making
processes, its ability to identify intricate patterns or anomalies that may pose difficulties for
humans, and its potential to enhance predictive accuracy and generate valuable insights
over time [22,23]. Consequently, machine learning has the potential to augment efficiency,
precision, and innovation within numerous industries. Nonetheless, the field also presents
challenges concerning the quality of data, potential biases within datasets or algorithms,
the interpretability of complex models, and ethical considerations [24,25].

Various prediction and optimization studies related to a machine learning model have
been released. Min et al. [26] predicted and optimized the shear strength and curing time
of non-conductive adhesives (NCAs) using an artificial neural network (ANN) model. The
model accuracy was improved by 28.9–35.2% compared to other studies. They proposed
the optimized NCA formulation as the range of 0.2137 × (resin content in phr) + (catalyst
content in phr) ≥ 35.87 for mass production requirements. Sood et al. [27] studied the
statistical analysis of the dimensional accuracy in the FDM process using parameters such
as layer thickness, part orientation, raster angle, air gap, and raster width. To optimize
the percentage change in length, width, and thickness simultaneously, the grey Taguchi
method is employed to determine the optimal levels of process parameters. In addition,
they predicted overall dimensional accuracy using the ANN model. The errors between
predicted data and measured data were 0–3.5%. Mohamed et al. [28] investigated the effects
of FDM fabrication conditions on dimensional accuracy. An ANN model was employed to
predict and optimize the effects of six operating parameters including slice thickness, raster
air gap, deposition angle, print direction, width, and perimeters. The R2 was over 99%, and
the minimum percentage differences in length (0.244 mm, 4%) and diameter (0.480 mm,
3%) were obtained.

Recently, studies based on the prediction and optimization of experimental parameters
for additive manufacturing have emerged. However, the FDM process is characterized by
its high complexity, and there is a scarcity of theoretical models available for the purpose of
prediction. The complexity of the printed 3D object has a detrimental effect on its accuracy,
resulting in decreased levels of precision. From a review of the literature, it can be seen
that some AM processes have limitations for comprehensive mathematical models, making
it difficult to predict and optimize parameters accurately. AM parameter optimization
often involves multiple interdependent variables. Optimizing across numerous variables
can be challenging and may lead to suboptimal solutions. Moreover, the accuracies of
the objects—including support bars and inclination angle—preventing the reflection of
the object, were not studied. In this paper, 3D objects were printed with various support
bars and inclination angles through the FDM process, and the quality of the 3D-printed
object were evaluated. First, primary factors were analyzed for the improvement of the
printing quality through the multiple regression model and analysis of variance. Second,
prediction machine learning models were developed for predicting printing accuracy. From
the results, the prediction models for the dimensional accuracies of FDM 3D-printed objects
were developed.

2. Experiments
2.1. Materials and 3D Printing

In this study, PLA was employed as the material for FDM 3D printing. Filament-type
PLA was provided by Polymaker (Shanghai, China) and was used for 3D printing, and the
filament diameter was 2.85 mm. The material properties are listed in Table 1.
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Table 1. Material properties.

Material Density (g/cm3

at 21.5 ◦C)
Glass Transition

Temp. (◦C)
Melting Temp.

(◦C)
Young’s

Modulus (MPa)
Tensile

Strength (MPa)
Tensile

Strength (MPa)

PLA 1.17–1.24 61 150 2636 ± 330 46.6 ± 0.9
(XY axis)

43.5 ± 3.1
(Z axis)

The FDM 3D printing equipment was Ultimaker 2+ (Ultimaker, Utrecht, The Nether-
lands) with the principal specifications detailed in Table 2. The design of three-dimensional
models for 3D printing was executed using Solidworks 2021 (SolidWorks Corp., Dassault
Systèmes, Waltham, MA, USA). Subsequently, the designed 3D model was saved in the
standard triangle language (STL) file format. Each model was sliced by Ultimaker Cura
5.0.0 (Ultimaker, Utrecht, The Netherlands), and G-code was generated.

Table 2. Specifications of FDM 3D printing equipment.

Model Ultimaker 2+ (Ultimaker,
The Netherlands)

Build volume (mm) 223 × 220 × 205
Layer resolution (µm) @ 0.4 mm nozzle 20–200

Accuracy (µm) 12.5 in XY axis
5.0 in Z axis

The base model dimensions encompass 10 mm × 10 mm × 25 mm along the XYZ
axis. Variable printing parameters included the inclination angle, layer thickness, support
spacing, and raster angle (Table 3). An illustrative model design is presented in Figure 1.
The models featuring inclination angles of 60◦ and 75◦ were printed without the application
of support structures.

Table 3. Design parameters.

Factors
Level

1 2 3 4 5

Inclination angle (◦) 15 30 45 60 75
Layer thickness (mm) 0.2 0.4 0.6 - -
Support space (mm) 5 10 15 - -

Raster angle (◦) 0 45 90 - -
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and (c) 15 mm.

For comparison of the variable parameters, additional printing conditions includ-
ing printing temperature, nozzle movement speed, and infill density were held constant
(Table 4). Subsequent to printing, all 3D objects were subjected to a 3 h cooling period.
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Table 4. Printing conditions.

Material PLA

Nozzle temperature (◦C) 210
Bed temperature (◦C) 60

Nozzle moving speed (mm/s) 60
Infill density (%) 100

2.2. Measurement of the Printed Object

The surface profile of the 3D object printed by the FDM process was measured by
the optical measurement inspection system. The measuring equipment was Datastar 200
from RAM Optical Instrumentation Incorporated (Rochester, NY, USA) with the main
specifications detailed in Table 5.

Table 5. Specifications of RAM optical measurement inspection system.

Model Datastar 200 (RAM Optical Instrumentation
Incorporated, Rochester, NY, USA)

Measuring range (mm) 200 × 150 × 150
Optical magnification ×35–×280

Resolution (µm) 0.5
Max. measured load (kg) 23

Accuracy (µm) 2.5 in XY axis
5.0 in Z axis

The base, slope, and top lines of the side surfaces of the objects were inspected to
investigate the dimensional accuracy between measured and designed profiles, and the
edges of the side surface were subjected to scanning. The base line of the measured surface
profile was considered as the parallel line along the X-axis, meaning that it was assumed to
match the designed base line of the 3D object; then, the slope and top lines were utilized
for dimensional accuracy analysis (Figure 2). The mean squared dimensional error (MSDE)
between measured and designed profiles in the slope and top lines was calculated and was
denoted as a representative output for the dimensional accuracy of this study.
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2.3. Regression Models

In this study, three types of regression models were employed to predict 3D object
dimensions. A multiple linear regression model was employed for the analysis, while
Gaussian process regression (GPR) and support vector machines (SVM) algorithms were im-
plemented using MATLAB version R2021a. Additionally, an ANN model was constructed
using Python for the purposes of comparison and evaluation.
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The input parameters were inclination angle, layer thickness, support space, and raster
angle, and the output parameters were the MDSEs for dimensional accuracies of the objects.
A total of 81 datapoints were used for the prediction of 3D objects. These 81 datapoints
were randomly divided into training, validation, and test datasets at a ratio of 70%, 15%,
and 15%, respectively.

ANN model was employed with three hidden layers and 32 nodes. A rectified linear
unit (ReLU) activation function was used. The mean absolute errors (MAEs) loss function
and adaptive moment estimation (ADAM) optimizer, including a learning rate of 0.001,
β1 = 0.9, β2 = 0.999, and ε = 10−8, were applied in model training and optimization. The
models were trained for 200 epochs with minibatches of 10 to avoid the overfitting issue.
The flow chart for ANN model is shown in Figure 3.
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3. Results
3.1. Stacking Profiles

All designed 3D objects were printed three times to assess the stacking profile, which
was defined as the outline of the printed object in the XZ plane. The printed objects formed
a rectangular bar without noticeable flaw (Figure 4a). The printed 3D objects, with a 45◦

inclination angle and support spaces of 5, 10, and 15 mm, are shown in Figure 4b.
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Figure 4. Printed 3D objects of (a) all objects and (b) with 45◦ inclination angle and support spaces of
5 mm, 10 mm, and 15 mm.

The stacking profiles were used to evaluate the dimensional accuracy compared to
the original design. Measured profiles were expressed in red lines and compared to the
designed profiles in black lines (Figure 5). The differences between measured and designed
profiles were recorded and set as output for the dataset.
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3.2. Correlation Analysis

Tables 6 and 7 show the correlation coefficients between process parameters and the
MSDE (output) for supporting cases and non-supporting cases, respectively. As shown in
Table 6, Pearson correlation coefficients for support spacing, layer thickness, raster angle,
and inclination angle were −0.436, 0.565, 0.477, and −0.152, respectively. p-values were 0
for supporting spacing, layer thickness, and raster angle and 0.177 for inclination angle.
As shown in Table 7, Pearson correlation coefficients for layer thickness, raster angle, and
inclination angle were 0.754, −0.254, and 0.157, respectively. p-values for layer thickness,
raster angle, and inclination angle were 0, 0.308, and 0.534, respectively.

Table 6. The correlation coefficient for supporting cases.

Supporting
Spacing

Layer
Thickness Raster Angle Inclination

Angle

Pearson, R −0.436 0.565 0.477 −0.152
p-value 0.0 0.0 0.0 0.177

Table 7. The correlation coefficient for non-supporting cases.

Layer Thickness Raster Angle Inclination Angle

Pearson, R 0.754 −0.254 0.157
p-value 0.0 0.308 0.534

In cases where support was utilized, the influences of support spacing, layer thickness,
and raster angle were found to be statistically significant relationships with the dependent
variable, as indicated by a p-value below 0.05. By the Pearson correlation coefficients,
support spacing exhibited a negative relationship, while layer thickness and raster angle
indicated positive relationships, and layer thickness exhibited the most prominent degree
of correlation. In cases where support was not utilized, only layer thickness exhibited
statistically significant influence, as evidenced by p-values below 0.05 and the highest
positive level of correlation.

3.3. Multiple Linear Regression Model Analysis

The multiple linear regression model was employed to investigate the relationships
between the parameters (support spacing, layer thickness, raster angle, and inclination
angle) and the MSDE. Variable values of multiple linear regression models for supporting
or non-supporting cases are listed in Tables 8 and 9. The coefficient of determination (R2)
for the support object used four input parameters, namely, support spacing, layer thickness,
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raster angle, and inclination angle, and one output parameter, namely, the MSDE. The R2

for the non-support object used three parameters, namely, layer thickness, raster angle,
and inclination angle, and one output parameter, namely, the MSDE. The R2s are listed in
Table 10.

Table 8. Variable values of multiple linear regression models for supporting cases.

Coefficient Standard Error t p

Constant 0.08614 0.0418 2.06 0.043
Support spacing 0.022685 0.002261 10.03 0.0
Layer thickness 0.47917 0.05653 8.48 0.0

Raster angle −0.00068 0.000251 −2.69 0.009
Inclination angle −0.00584 0.000754 −7.75 0.0

Table 9. Variable values of multiple linear regression model for non-supporting cases.

Coefficient Standard Error t p

Constant −0.1115 0.1275 −0.87 0.396
Layer thickness 0.3975 0.08251 4.82 0.0

Raster angle −0.0006 0.000367 −1.63 0.126
Inclination angle 0.0018 0.001796 1 0.333

Table 10. The coefficient of determination (R2) of support and non-support objects.

Object R2

Support 0.759
Non-support 0.659

In the case of the supporting object, the p-values for support spacing, layer thickness,
raster angle, and inclination angle were 0.043, 0.0, 0.0, 0.009, and 0.0, respectively. The
t-values for the support spacing, layer thickness, raster angle, and inclination angle, which
had p-values below 0.05, were 10.03, 8.48, −2.67, and −7.75, respectively. Their standard
errors were 0.00226, 0.05653, 0.000251, and 0.000754. The constant term, represented by
0.08614 of the coefficient, had a standard error of 0.0418. The t-value was 2.06, and the
p-value was 0.043, indicating a statistically significant relationship. This implies that even
when all predictor variables are zero, the constant term has a significant impact on the
dependent variable. The MSDE, which was representative as the output, can be calculated
as 0.0861 + 0.0277 × supporting space + 0.479 × layer thickness − 0.000677 × raster angle
− 0.00584 × inclination angle. The R2 between the four input parameters and one output
parameter was 0.759.

In the case of the non-supporting object, the p-values for layer thickness, raster angle,
and inclination angle were 0, 0.126, and 0.333, respectively. The t-values were 4.82 for
layer thickness, −1.63 for raster angle, and 1 for inclination angle. Their standard errors
were 0.08251, 0.000367, and 0.001796. The constant term, represented by −0.1115 of the
coefficient, had a standard error of 0.1275. The t-value was −0.87, and the p-value was
0.396, indicating no statistically significant relationship. This suggests that when all other
predictor variables are zero, the constant does not significantly influence the dependent
variable. The MSDE was calculated as −0.111 + 0.397 × layer thickness − 0.0006 × raster
angle + 0.00180 × inclination angle. The R2 between the three parameters and one output
parameter was 0.659.

In cases where support was utilized, support spacing, layer thickness, raster angle,
and inclination angle were found to be statistically significant predictors of the dependent
variable, as evidenced by p-values below 0.05. Support spacing and layer thickness exhib-
ited positive relationships, while raster angle and inclination angle demonstrated negative
relationships. In cases where support was not utilized, only layer thickness exhibited a
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statistically significant influence on the dependent variable, while raster angle and incli-
nation angle did not exhibit statistically significant relationships. These findings provide
valuable insights into the factors influencing the dependent variable and can contribute to
the optimization and improvement of the studied system.

3.4. ANOVA Test

In this study, the main and interaction effects of design parameters on MSDE were
investigated by using the ANOVA model. The ANOVA results for supporting and non-
supporting cases are listed in Tables 11 and 12. Visual representations of the main and in-
teraction effects of design parameters for supportive cases are presented in Figures 6 and 7,
respectively. Correspondingly, Figures 8 and 9 illustrate the effects on MSDE for non-
supportive cases.

Table 11. ANOVA table for supporting cases.

DOF SS MS p

Inclination angle 2 0.42420 0.21210 0.000
Support spacing 2 0.71189 0.35594 0.000
Layer thickness 2 0.50658 0.25329 0.000

Raster angle 2 0.45701 0.22851 0.000
Inclination angle × support spacing 4 0.00517 0.00129 0.415
Inclination angle × layer thickness 4 0.00240 0.00060 0.759

Inclination angle × raster angle 4 0.00102 0.00026 0.938
support spacing × layer thickness 4 0.00540 0.00135 0.392

support spacing × raster angle 4 0.00319 0.00080 0.650
Layer thickness × raster angle 4 0.00099 0.00025 0.940

Error 48 0.06173 0.00129
Total 80 2.17959

Table 12. ANOVA table for non-supporting cases.

DOF SS MS p

Inclination angle 1 0.00328 0.00328 0.052
Layer thickness 2 0.07624 0.03812 0.001

Raster angle 2 0.04589 0.02295 0.001
Inclination angle × layer thickness 2 0.00007 0.00004 0.923

Inclination angle × raster angle 2 0.00041 0.00021 0.658
Layer thickness × raster angle 4 0.00586 0.00146 0.135

Error 4 0.00176 0.00044
Total 17 0.13351

The ANOVA table provides a comprehensive summary of the analysis, detailing the
degrees of freedom (DOF), sum of squares (SS), mean squares (MS), and associated p-values
for each factor, alongside the error term, as presented in Table 11. Our findings underscore
the profound impact of all control parameters—namely, inclination angle, support spacing,
layer thickness, and raster angle—on the output (MSDE). In Table 11, the p-values for
all primary factors fall comfortably below the established significance threshold of 0.05,
confirming their statistical significance at a confidence level of α = 0.05. On the other hand,
the interactions between these parameters showed the p-values were greater than 0.05,
so this suggests that these interaction terms are not statistically significant and do not
significantly affect the output.
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As illustrated in Figure 6, an increase in the inclination angle (Angle) led to a reduction
in MSDE. Adjusting the inclination angle from 15◦ to 30◦ and from 30◦ to 45◦ resulted in
MSDE reductions of 16.88% and 35.32%, respectively. Conversely, an increase in support
spacing (Support) and layer thickness (L.T) was associated with an increase in MSDE.
Specifically, increasing support spacing from 5 mm to 10 mm and from 10 mm to 15 mm led
to MSDE increases of 82.31% and 25.81%, respectively. Similarly, elevating layer thickness
from 0.2 mm to 0.4 mm and from 0.4 mm to 0.6 mm resulted in MSDE increases of 61.56%
and 22.68%, respectively. The MSDE exhibited a declining trend with rising raster angle
(R.A) until 45◦, beyond which an increase was observed. Notably, the lowest MSDE was
observed at a raster angle of 45◦. Based on the main effect analysis, the optimal combination
entailed an inclination angle of 45◦, support spacing of 5 mm, layer thickness of 0.2 mm,
and a raster angle of 45◦. As depicted in Figure 7, the analysis indicated no significant
interactions between parameters.

Table 12 presents the ANOVA results for non-supporting cases, outlining the statistical
significance of main and interaction effects. Layer thickness and raster angle both exhibited
significant effects on MSDE, with p-values smaller than 0.05. The p-value for the inclination
angle was relatively close to the 0.05 threshold, suggesting a comparatively moderate level
of significance. Regarding interactions, all terms had p-values exceeding 0.05.

Figure 8 depicts how an increase in inclination angle and layer thickness contributed
to the MSDE increase. For instance, increasing the inclination angle from 60◦ to 75◦ led to a
20.98% MSDE increase. Similarly, augmenting layer thickness from 0 mm to 0.4 mm and
from 0.4 mm to 0.6 mm resulted in MSDE increases of 150.93% and 46.71%, respectively. The
MSDE followed a decreasing trend until a raster angle of 45◦, beyond which it increased.
Specifically, adjusting the raster angle from 0◦ to 45◦ resulted in a 61.33% MSDE reduction,
followed by an 89.59% MSDE increase upon further adjustment to 90◦. Based on the
main effect analysis, the optimal combination consisted of a 60◦ inclination angle, 0.2 mm
layer thickness, and a 45◦ raster angle. Figure 9 highlighted interaction effects, though no
significant interactions were observed.

3.5. Machine Learning Regression Model Analysis

Machine learning regression models were developed to predict dimensional accu-
racy in this study. The calculated MAEs (errors between the measured MSDEs and
the predicted MSDEs) for GPR and SVM are listed in Table 13. The R2 between in-
put parameters—namely, inclination angle, support space, layer thickness, and raster
angle—and output parameter—namely, MSDE—for GPR and SVM were verified as shown
in Figure 10. The MAEs were 0.02047 mm for GPR and 0.03476 mm for SVM, and the R2

between the four input parameters and one output parameter for GPR and SVM were
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0.98 and 0.93, respectively. Despite the utilization of a limited number of datapoints
(81 datapoints), the regression models exhibited R2 values exceeding 90%, indicating high
accuracy. Compared to the recently research [29], R2 values for GPR and SVM were higher:
12.99–18.58% or 3.23–10.00% higher than their study, respectively. Furthermore, it can be
inferred that increasing the number of datapoints would lead to higher accuracies in the
regression models.

Table 13. Mean absolute errors (MAEs) of the GPR and SVM models.

Regression Model MAE

GPR 0.020473
SVM 0.034762
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3.6. Neural Network Regression Model Analysis

In this study, the support cases (15◦, 30◦, and 45◦ of inclination angles) and non-support
cases (60◦ and 75◦ of inclination angles) were trained without overfitting, as shown in
Figure 11. The loss for the training dataset and the loss for the validation dataset decreased
with each epoch number, and both loss datasets were converged after the 25th and 90th
epoch for the MAE for support cases and the MAE for non-support cases, respectively.
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The MAEs for the support cases were 0.0056 mm for training and 0.0055 mm for
validation. The MAEs for non-support cases were 1.1172 × 10−4 mm for training and
2.1468 × 10−5 mm for validation. All MAEs are listed in Tables 14 and 15. The R2 between
the four input parameters for support cases or the three input parameters for non-support
cases and one output parameter for both support and non-support cases were 0.9995 and
0.9999, respectively, as shown in Figure 12.

Table 14. Mean absolute errors (MAEs) of training and validation for the support cases.

Regression Model MAE

Training 0.0056
Validation 0.0055

Table 15. Mean absolute errors (MAEs) of training and validation for the non-support cases.

Regression Model MAE

Training 1.1172 × 10−4

Validation 2.1468 × 10−5
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In Figures 13–16, the effects of input parameters on the MSDE were investigated by the
ANN models. In the estimation, the MSDEs were shown by varying two input variables,
but other variables were fixed.
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Figures 13–15 present the MSDEs observed for different support space widths (5 mm,
10 mm, and 15 mm) and layer thicknesses (0.2 mm, 0.4 mm, and 0.6 mm), considering
the variations in inclination angle and raster angle. Figure 16, on the other hand, displays
the MSDEs for cases where no support is used, with corresponding 0.2 mm, 0.4 mm, and
0.6 mm of layer thicknesses.

In the case of utilizing support objects, an increase in inclination angle was found
to result in a decrease in the MSDEs. Additionally, an increase in support space was
observed to lead to an increase in the MSDEs. However, under the same inclination angle
conditions, when the raster angles were set to 45◦, the MSDEs exhibited relatively lower
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values compared to other raster angles. In the case of utilizing the non-support object, as
the inclination angle increased, the MSDEs also increased. Moreover, when the raster angle
was 45◦, the MSDEs were observed to be lower compared to the errors associated with
other raster angles.

Increasing the inclination angle with support provides better support for overhanging
features and complex geometries, maintaining structural integrity and reducing defor-
mations. By mitigating the effects of gravity, the inclination angle with support reduces
material sagging, warping, or overhangs and enables more controlled and accurate mate-
rial deposition, resulting in reduced MSDEs [30]. A raster angle of 45◦ provides a more
balanced deposition pattern during the printing process. This angle allows for a balanced
distribution of stresses and forces, resulting in improved layer adhesion and reduced
distortion. In contrast, at extreme angles such as 0◦ or 90◦, the deposition pattern may
introduce more inherent weaknesses, leading to increased MSDEs and reduced dimensional
accuracy [28,31,32].

4. Conclusions

In this study, 3D objects with various support bars and inclination angles were manu-
factured using the FDM process. The main effect and interaction factor were determined
for the 3D-printed object quality utilizing a multiple regression model and ANOVA test.
Prediction models were formulated to forecast printing accuracy through the utilization of
three distinct machine learning models.

1. The influences of support spacing, layer thickness, and raster angle were founded
to be statistically significant by the Pearson and p-value analysis, and all parameters
(supporting spacing, layer thickness, raster angle, and inclination angle) were assessed
to be statistically significant predictors of the dependent variable by multiple linear
regression model and ANOVA analysis. The optimal combination entailed a 45◦

inclination angle, 5 mm of support spacing, 0.2 mm of layer thickness, and a 45◦ raster
angle.

2. Results of the R2 from multiple linear regression, GPR, SVM, and the neural network
model (from Python) were 76%, 98%, 93%, and 99%, respectively. MAEs for GPR and
SVM were 0.020 mm and 0.034 mm. MAEs for neural network models from Python
were 0.0055 mm for supporting cases and 2.1468 x 10−5 mm for non-supporting cases.

3. The minimum MSDE was obtained at a 45◦ raster angle and 45◦ inclination angle
(when 5 mm of support space with 0.2 mm of layer thickness), according to the neural
network model.

The dimensional deformations of molds, which are caused by thermal deformations
such as warpage and heat distortion and can occur during the rapid tooling process,
can be predicted. Using machine learning models, it is possible to predict and compare
dimensional deformation for various material composites.
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