38,761 research outputs found

    Sine-Gordon Soliton on a Cnoidal Wave Background

    Full text link
    The method of Darboux transformation, which is applied on cnoidal wave solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave background. Interesting characteristics of the solution, i.e., the velocity of solitons and the shift of crests of cnoidal waves along a soliton, are calculated. Solutions are classified into three types (Type-1A, Type-1B, Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change

    Computed tomographic imaging characteristics of the normal canine lacrimal glands.

    Get PDF
    BackgroundThe canine lacrimal gland (LG) and accessory lacrimal gland of the third eyelid (TEG) are responsible for production of the aqueous portion of the precorneal tear film. Immune-mediated, toxic, neoplastic, or infectious processes can affect the glands directly or can involve adjacent tissues, with secondary gland involvement. Disease affecting these glands can cause keratoconjunctivitis sicca, corneal ulcers, and loss of vision. Due to their location in the orbit, these small structures are difficult to evaluate and measure, making cross-sectional imaging an important diagnostic tool. The detailed cross-sectional imaging appearance of the LG and TEG in dogs using computed tomography (CT) has not been reported to date.ResultsForty-two dogs were imaged, and the length, width, and height were measured and the volume calculated for the LGs & TEGs. The glands were best visualized in contrast-enhanced CT images. The mean volume of the LG was 0.14 cm3 and the TEG was 0.1 cm3. The mean height, width, and length of the LG were, 9.36 mm, 4.29 mm, and 9.35 mm, respectively; the corresponding values for the TEG was 2.02 mm, 9.34 mm, and 7.90 mm. LG and TEG volume were positively correlated with body weight (p < 0.05).ConclusionsContrast-enhanced CT is a valuable tool for noninvasive assessment of canine lacrimal glands

    On the Incompleteness of Berger's List of Holonomy Representations

    Full text link
    In 1955, Berger \cite{Ber} gave a list of irreducible reductive representations which can occur as the holonomy of a torsion-free affine connection. This list was stated to be complete up to possibly a finite number of missing entries. In this paper, we show that there is, in fact, an infinite family of representations which are missing from this list, thereby showing the incompleteness of Berger's classification. Moreover, we develop a method to construct torsion-free connections with prescribed holonomy, and use it to give a complete description of the torsion-free affine connections with these new holonomies. We also deduce some striking facts about their global behaviour.Comment: 20 pages, AMS-LaTeX, no figure

    Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles

    Full text link
    We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two dimensional system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that larger activities of SPPs yield a higher effective temperature of the bath and thus facilitate looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer's centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our results are applicable to rationalising the dimensions and looping kinetics of biopolymers at constantly fluctuating and often actively driven conditions inside biological cells or suspensions of active colloidal particles or bacteria cells.Comment: 15 pages, 9 figures, IOPLaTe

    Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene

    Get PDF
    We investigated the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrated that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. Our observations are accounted for by considering the interplay between photo-induced changes of both the Drude weight and the carrier scattering rate. Notably, we observed multiple sign changes in the temporal photoconductivity dynamics at low carrier density. This behavior reflects the non-monotonic temperature dependence of the Drude weight, a unique property of massless Dirac fermions

    PRESENCE AND PREVALENCE OF BD (BATRACHOCHYTRIUM DENDROBATIDIS) IN CENTRAL PENNSYLVANIAN WOODLAND VERNAL POOLS

    Get PDF
    Batrachochytrium dendrobatidis (Bd), a virulent chytrid fungus responsible for dramatic amphibian declines, has been detected in the northwestern and southeastern regions of Pennsylvania. However, little environmental Bd testing has been performed in central Pennsylvania, particularly in the unique and speciose habitats of woodland vernal pools. Our study included sampling in four vernal pools over a period of three months during amphibian breeding periods. Skin swabs were taken from three caudate and two anuran species, during the course of late winter and spring migrations (n = 143). Low Bd zoospore equivalent loads were detected in only a few individuals, in three of the five species but in all four vernal pools sampled. No significant trends were seen between zoospore loads and ambient temperature or migration timing across the species sampled

    Monolithic arrays of surface emitting laser NOR logic devices

    Get PDF
    Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input

    N3LO NN interaction adjusted to light nuclei in ab exitu approach

    Get PDF
    We use phase-equivalent transformations to adjust off-shell properties of similarity renormalization group evolved chiral effective field theory NN interaction (Idaho N3LO) to fit selected binding energies and spectra of light nuclei in an ab exitu approach. We then test the transformed interaction on a set of additional observables in light nuclei to verify that it provides reasonable descriptions of these observables with an apparent reduced need for three- and many-nucleon interactions.Comment: Revised text due to journal referee comments. 6 pages, 2 figure

    Monolithic arrays of surface emitting laser NOR logic devices

    Get PDF
    Monolithic, cascadable, laser-logic-device arrays have been realized and characterized. The monolithic surface-emitting laser logic (SELL) device consists of an AlGaAs superlattice lasing around 780 nm connected to a heterojunction phototransistor (HPT) in parallel and a resistor in series. Arrays up to 8×8 have been fabricated, and 2×2 arrays show uniform characteristics. The optical logic output is switched off with 40 μW incident optical input

    Faddeev calculation of pentaquark Θ+\Theta^+ in the Nambu-Jona-Lasinio model-based diquark picture

    Full text link
    A Bethe-Salpeter-Faddeev (BSF) calculation is performed for the pentaquark Θ+\Theta^+ in the diquark picture of Jaffe and Wilczek in which Θ+\Theta^+ is a diquark-diquark-sˉ{\bar s} three-body system. Nambu-Jona-Lasinio (NJL) model is used to calculate the lowest order diagrams in the two-body scatterings of sˉD{\bar s}D and DDD D. With the use of coupling constants determined from the meson sector, we find that sˉD{\bar s}D interaction is attractive in s-wave while DDDD interaction is repulsive in p-wave. With only the lowest three-body channel considered, we do not find a bound 12+ \frac 12^+ pentaquark state. Instead, a bound pentaquark Θ+\Theta^+ with 12 \frac 12^- is obtained with a unphysically strong vector mesonic coupling constants.Comment: 22 pages, 11 figures, accepted version in Phys. Rev. C. Summary of main changes/corrections: 1. "which only holds at tree level" below the eq. (23) is added. 2. In the last paragraph of p.23 we added a remark that the coupling constant obtained from Lambda mass is different from the estimate as obtained from the meson spectru
    corecore