1,555 research outputs found

    On the special values of certain L-series related to half-integral weight modular forms

    Get PDF
    Let h be a cuspidal Hecke eigenform of half-integral weight, and En/2+1/2 be Cohen’s Eisenstein series of weight n/2+1/2. For a Dirichlet character χ we define a certain linear combination R(χ)(s, h,En/+1/2) of the Rankin-Selberg convolution products of h and En/2+1/2 twisted by Dirichlet characters related with χ. We then prove a certain algebraicity result for R(χ)(l, h,En/2+1/2) with l integers

    Non-vanishing of LL-functions associated to cusp forms of half-integral weight

    Full text link
    In this article, we prove non-vanishing results for LL-functions associated to holomorphic cusp forms of half-integral weight on average (over an orthogonal basis of Hecke eigenforms). This extends a result of W. Kohnen to forms of half-integral weight.Comment: 8 pages, Accepted for publication in Oman conference proceedings (Springer

    On certain finiteness questions in the arithmetic of modular forms

    Get PDF
    We investigate certain finiteness questions that arise naturally when studying approximations modulo prime powers of p-adic Galois representations coming from modular forms. We link these finiteness statements with a question by K. Buzzard concerning p-adic coefficient fields of Hecke eigenforms. Specifically, we conjecture that for fixed N, m, and prime p with p not dividing N, there is only a finite number of reductions modulo p^m of normalized eigenforms on \Gamma_1(N). We consider various variants of our basic finiteness conjecture, prove a weak version of it, and give some numerical evidence.Comment: 25 pages; v2: one of the conjectures from v1 now proved; v3: restructered parts of the article; v4: minor corrections and change

    Endomorphisms of superelliptic jacobians

    Full text link
    Let K be a field of characteristic zero, n>4 an integer, f(x) an irreducible polynomial over K of degree n, whose Galois group is doubly transitive simple non-abelian group. Let p be an odd prime, Z[\zeta_p] the ring of integers in the p-th cyclotomic field, C_{f,p}:y^p=f(x) the corresponding superelliptic curve and J(C_{f,p}) its jacobian. Assuming that either n=p+1 or p does not divide n(n-1), we prove that the ring of all endomorphisms of J(C_{f,p}) coincides with Z[\zeta_p].Comment: Several typos have been correcte

    Virtually abelian K\"ahler and projective groups

    Full text link
    We characterise the virtually abelian groups which are fundamental groups of compact K\"ahler manifolds and of smooth projective varieties. We show that a virtually abelian group is K\"ahler if and only if it is projective. In particular, this allows to describe the K\"ahler condition for such groups in terms of integral symplectic representations

    On higher congruences between cusp forms and Eisenstein series

    Full text link
    In this paper we present several finite families of congruences between cusp forms and Eisenstein series of higher weights at powers of prime ideals. We formulate a conjecture which describes properties of the prime ideals and their relation to the weights. We check the validity of the conjecture on several numerical examples.Comment: 20 page

    Arithmetic Spacetime Geometry from String Theory

    Full text link
    An arithmetic framework to string compactification is described. The approach is exemplified by formulating a strategy that allows to construct geometric compactifications from exactly solvable theories at c=3c=3. It is shown that the conformal field theoretic characters can be derived from the geometry of spacetime, and that the geometry is uniquely determined by the two-dimensional field theory on the world sheet. The modular forms that appear in these constructions admit complex multiplication, and allow an interpretation as generalized McKay-Thompson series associated to the Mathieu and Conway groups. This leads to a string motivated notion of arithmetic moonshine.Comment: 36 page

    Mass equidistribution of Hilbert modular eigenforms

    Full text link
    Let F be a totally real number field, and let f traverse a sequence of non-dihedral holomorphic eigencuspforms on GL(2)/F of weight (k_1,...,k_n), trivial central character and full level. We show that the mass of f equidistributes on the Hilbert modular variety as max(k_1,...,k_n) tends to infinity. Our result answers affirmatively a natural analogue of a conjecture of Rudnick and Sarnak (1994). Our proof generalizes the argument of Holowinsky-Soundararajan (2008) who established the case F = Q. The essential difficulty in doing so is to adapt Holowinsky's bounds for the Weyl periods of the equidistribution problem in terms of manageable shifted convolution sums of Fourier coefficients to the case of a number field with nontrivial unit group.Comment: 40 pages; typos corrected, nearly accepted for
    corecore