1,555 research outputs found
On the special values of certain L-series related to half-integral weight modular forms
Let h be a cuspidal Hecke eigenform of half-integral weight, and En/2+1/2 be Cohen’s Eisenstein series of weight n/2+1/2. For a Dirichlet character χ we define a certain linear combination R(χ)(s, h,En/+1/2) of the Rankin-Selberg convolution products of h and En/2+1/2 twisted by Dirichlet characters related with χ. We then prove a certain algebraicity result for R(χ)(l, h,En/2+1/2) with l integers
Non-vanishing of -functions associated to cusp forms of half-integral weight
In this article, we prove non-vanishing results for -functions associated
to holomorphic cusp forms of half-integral weight on average (over an
orthogonal basis of Hecke eigenforms). This extends a result of W. Kohnen to
forms of half-integral weight.Comment: 8 pages, Accepted for publication in Oman conference proceedings
(Springer
On certain finiteness questions in the arithmetic of modular forms
We investigate certain finiteness questions that arise naturally when
studying approximations modulo prime powers of p-adic Galois representations
coming from modular forms. We link these finiteness statements with a question
by K. Buzzard concerning p-adic coefficient fields of Hecke eigenforms.
Specifically, we conjecture that for fixed N, m, and prime p with p not
dividing N, there is only a finite number of reductions modulo p^m of
normalized eigenforms on \Gamma_1(N). We consider various variants of our basic
finiteness conjecture, prove a weak version of it, and give some numerical
evidence.Comment: 25 pages; v2: one of the conjectures from v1 now proved; v3:
restructered parts of the article; v4: minor corrections and change
Endomorphisms of superelliptic jacobians
Let K be a field of characteristic zero, n>4 an integer, f(x) an irreducible
polynomial over K of degree n, whose Galois group is doubly transitive simple
non-abelian group. Let p be an odd prime, Z[\zeta_p] the ring of integers in
the p-th cyclotomic field,
C_{f,p}:y^p=f(x) the corresponding superelliptic curve and J(C_{f,p}) its
jacobian. Assuming that either n=p+1 or p does not divide n(n-1), we prove that
the ring of all endomorphisms of J(C_{f,p}) coincides with Z[\zeta_p].Comment: Several typos have been correcte
Virtually abelian K\"ahler and projective groups
We characterise the virtually abelian groups which are fundamental groups of
compact K\"ahler manifolds and of smooth projective varieties. We show that a
virtually abelian group is K\"ahler if and only if it is projective. In
particular, this allows to describe the K\"ahler condition for such groups in
terms of integral symplectic representations
On higher congruences between cusp forms and Eisenstein series
In this paper we present several finite families of congruences between cusp
forms and Eisenstein series of higher weights at powers of prime ideals. We
formulate a conjecture which describes properties of the prime ideals and their
relation to the weights. We check the validity of the conjecture on several
numerical examples.Comment: 20 page
Arithmetic Spacetime Geometry from String Theory
An arithmetic framework to string compactification is described. The approach
is exemplified by formulating a strategy that allows to construct geometric
compactifications from exactly solvable theories at . It is shown that the
conformal field theoretic characters can be derived from the geometry of
spacetime, and that the geometry is uniquely determined by the two-dimensional
field theory on the world sheet. The modular forms that appear in these
constructions admit complex multiplication, and allow an interpretation as
generalized McKay-Thompson series associated to the Mathieu and Conway groups.
This leads to a string motivated notion of arithmetic moonshine.Comment: 36 page
Mass equidistribution of Hilbert modular eigenforms
Let F be a totally real number field, and let f traverse a sequence of
non-dihedral holomorphic eigencuspforms on GL(2)/F of weight (k_1,...,k_n),
trivial central character and full level. We show that the mass of f
equidistributes on the Hilbert modular variety as max(k_1,...,k_n) tends to
infinity.
Our result answers affirmatively a natural analogue of a conjecture of
Rudnick and Sarnak (1994). Our proof generalizes the argument of
Holowinsky-Soundararajan (2008) who established the case F = Q. The essential
difficulty in doing so is to adapt Holowinsky's bounds for the Weyl periods of
the equidistribution problem in terms of manageable shifted convolution sums of
Fourier coefficients to the case of a number field with nontrivial unit group.Comment: 40 pages; typos corrected, nearly accepted for
- …
