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Abstract

Let h be a cuspidal Hecke eigenform of half-integral weight, and
En/2+1/2 be Cohen’s Eisenstein series of weight n/2+1/2. For a Dirich-
let character χ we define a certain linear combination R(χ)(s, h,En/+1/2)
of the Rankin-Selberg convolution products of h and En/2+1/2 twisted
by Dirichlet characters related with χ. We then prove a certain alge-
braicity result for R(χ)(l, h, En/2+1/2) with l integers.

0 Introduction

For two modular forms h1(z) and h2(z) of half-integral weights k1 + 1/2 and
k2 + 1/2, respectively, for Γ0(4), and a primitive character χ we define the

Rankin-Selberg convolution product R̃(s, h1, h2, χ) twisted by χ as

R̃(s, h1, h2, χ) = L(2s − k1 − k2 + 1, χk1−k2
−1 χ2)

∞∑
m=1

c1(m)c2(m)χ(m)

ms
,

where c1(m) and c2(m) denote the m-th Fourier coefficients of h1 and h2,
respectively, and L(s, χk1−k2

−1 χ2) is the Dirichlet L-function for χk1−k2
−1 χ2 (for

the precise definition of χ−1 see Section 1.)
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The analytic properties of this Dirichlet series were investigated by Shimura
[Sh2]. Furthermore the algebraicity of the values of this Dirichlet series at
half-integers was deeply investigated by Shimura [Sh2]. However, as far as
we know, there is no literature on the algebraicity of its special values at
integers except for [K-M]. Therefore we naturally ask the following question:

Question. What can one say about the algebraicity of R̃(m,h1, h2, χ)
with m an integer?

In [K-M], we gave a partial answer to the above question in the case h1

is a cuspidal Hecke eigenform in Kohnen’s plus subspace for Γ0(4) and h2

is Zagier’s Eisenstein series of weight 3/2. In this paper, we consider the
above question in the case h1 is a cuspidal Hecke eigenform in Kohnen’s
plus subspace for Γ0(4) and h2 is Cohen’s Eisenstein series. This paper is a
summary of our paper [Ka], which will be published elsewhere. To state our
main result more explicitly, we define another Dirichlet series R(s, h1, h2, χ)
by

R(s, h1, h2, χ) = L(2s − k1 − k2 + 1, χ2)
∞∑

m=1

ch1(m)ch2(m)χ(m)m−s.

Assume that k1 + k2 is even, and that the conductor of χ is odd. Then, as
will be explained in Section 1, it suffices to consider the above question for
R(m,h1, h2, χ) with integer m. Now let k and n be even integers such that
n ≥ 4 and 2k − n ≥ 12. Let h be a Hecke eigenform of weight k − n/2 + 1/2
for Γ0(4) belonging to Kohnen’s plus subspace, and S(h) the normalized
Hecke eigenform of weight 2k − n for SL2(Z) corresponding to h under the
Shimura correspondence. Moreover let En/2+1/2 be Cohen’s Eisenstein series
of weight n/2 + 1/2 (for the precise definition of En/2+1/2, see Section 2).
Let χ be a primitive character of conductor N. We assume that N is square
free and let N = p1 · · · pr be the prime decomposition of N. Put lj = ln,pj

=
G.C.D(n, pj − 1). For an r-tuple (i1, i2, · · · , ir) of integers put

χ(i1,··· ,ir) = χ
r∏

j=1

(
∗
pj

)ij

lj

,

where

(
∗
pj

)
lj

denotes the lj-th power residue symbol mod pj. For two Dirich-
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let characters η1 and η2 mod N, we define Jm(η1, η2) by

Jm(η1, η2) =
∑

Z

η1(det Z)η2(1 − tr(Z)),

where Z runs over all symmetric matrices of degree m with entries in Z/NZ
and tr(Z) denotes the trace of a matrix Z. We note that J1(η1, η2) is the Ja-

cobi sum J(η1, η2) associated with η1 and η2. We also put Jm(η1) = Jm(η1

( ∗
N

)m−1
, η1),

where
( ∗

N

)
is the Jacobi symbol. We then define

R(χ)(s, h, En/2+1/2) =

l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ(i1,··· ,ir)(2n)R(s, h, En/2+1/2, χ(i1,...,ir))

×J(χ(i1,··· ,ir),
( ∗

N

)
)Jn−1(χ(i1,··· ,ir))

n/2−1∏
j=1

L(2s − 2j, S(h), χ2
(i1,··· ,ir)),

where L(s, S(h), χ2
(i1,··· ,ir)) is Hecke’s L-function of S(h) twisted by χ2

(i1,··· ,ir).

Then our main result (Theorem 2.1) can be stated as follows:

There exists a finite dimensional Q-vector space Wh,En/2+1/2
in C such

that
R(χ)(m,h,En/2+1/2)

πmn
∈ Wh,En/2+1/2

for any integer m such that n/2 + 1 ≤ m ≤ k − n/2 − 1 and a character χ
of odd square free conductor such that χn is primitive.

From the above result we easily obtain the following (cf. Theorem 2.2):

Let r > dimQ Wh,En/2+1/2
. Let m1,m2, · · · ,mr be integers such that n/2 +

1 ≤ m1,m2, · · · ,mr ≤ k−n/2− 1 and χ1, χ2, · · · , χr be Dirichlet characters
of odd square free conductors N1, N2, · · · , Nr, respectively such that χn

i is
primitive for any i = 1, 2, · · · r. Then the values
R(χ1)(m1, h, En/2+1/2)

πm1n , · · · ,
R(χr)(mr, h, En/2+1/2)

πmrn

are linearly dependent over Q.

This is a certain generalization of a main result in [K-M] as will be ex-
plained later.

3



A main tool for proving Theorem 2.1 is the twisted Koecher-Maaß series
of the Duke-Imamoglu-Ikeda lift of h. To explain this, we define the twisted
Koecher-Maaß series of a Siegel modular form in a more general setting.
Let F (Z) be a modular form of weight k with respect to the symplectic
group Spn(Z). For a positive integer N let SLn,N(Z) = {U ∈ SLn(Z) | U ≡
1n mod N}, and eN(T ) = #{U ∈ SLn,N(Z) | T [U ] = T}. For a primitive
Dirichlet character χ mod N we define the Koecher-Maaß series L(s, F, χ) of
F twisted by χ as

L(s, F, χ) =
∑

T

χ(tr(T ))cF (T )

eN(T )(det T )s ,

where T runs over a complete set of representatives of SLn,N(Z)-equivalence
classes of positive definite half-integral matrices of degree n, and cF (T ) de-
notes the T -th Fourier coefficient of F. We note that this Dirichlet series
coincides with the Hecke L-function associated to F twisted by χ in case
n = 1. Though we are mainly concerned with L(s, F, χ) in this paper, we
also define another type of twisted Koecher-Maaß series L∗(s, F, χ) as

L∗(s, F, χ) =
∑

T

χ(det(2T ))cF (T )

e(T )(det T )s ,

where T runs over a complete set of representatives of SLn(Z)-equivalence
classes of positive definite half-integral matrices of degree n, and e(T ) =
e1(T ). These two Dirichlet series L(s, F, χ) and L∗(s, F, χ) essentially coincide
with each other in case n = 1, but they don’t in general. To distinguish these
two Dirichlet series, we sometimes call L(s, F, χ) and L∗(s, F, χ) the twisted
Koecher-Maaß series of the first and second kind, respectively. In Section 3,
we will discuss a relation between these two Dirichlet series (cf. Theorem 3.5.)
Now for the integers k and n stated above, let h a cuspidal Hecke eigenform
h in Kohnen’s plus subspace of weight k − n/2 + 1/2 for Γ0(4). Let In(h) be
the Duke-Imamoglu-Ikeda lift of h to the space of Siegel cusp forms of degree
n. Then, in Section 4, first we give an explicit formula of L∗(s, In(h), η) in
terms of the Rankin-Selberg series R(s, h, En/2+1/2, η) and shifted products
of Hecke’s L-functions of S(h) twisted by η2 in the case η is a primitive char-
acter (cf. Theorem 4.1.) Next, by this result combined with Theorem 3.5,
we give an explicit formula of L(s, In(h), χn) in terms of R(χ)(s, h, En/2+1/2)

and a sum of the shifted products
∏n/2−1

j=1 L(2s − 2j + 1, S(h), χ2
(i1,··· ,ir)) (cf.
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Theorem 4.2 and its corollary.) This implies that R(χ)(s, h, En/2+1/2) can
be expressed in terms of L(s, In(h), χn) and the sum of the shifted prod-
ucts. Thus we can prove our main result using the algebraicity of Hecke’s
L-function of S(h) (cf. Theorem 1.1) combined with the arithmetic proper-
ties of L(s, In(h), χn), which were investigated by Choie and Kohnen [C-K]
in a more general setting (cf. Theorem 3.2). We can also prove a functional
equation for R(χ)(s, h, En/2+1/2) in case n ≡ 2 mod 4 using the functional
equation for L(s, F, χn) (cf. Theorem 2.3.)

Notation. We denote by e(x) = exp(2π
√
−1x) for a complex num-

ber x. For a commutative ring R, we denote by Mmn(R) the set of (m,n)-
matrices with entries in R. For an (m,n)-matrix X and an (m,m)-matrix
A, we write A[X] = tXAX, where tX denotes the transpose of X. Let a
be an element of R. Then for an element X of Mmn(R) we often use the
same symbol X to denote the coset X mod aMmn(R). Put GLm(R) = {A ∈
Mm(R) | det A ∈ R∗}, and SLm(R) = {A ∈ Mm(R) | det A = 1}, where
det A denotes the determinant of a square matrix A and R∗ is the unit group
of R. We denote by Sn(R) the set of symmetric matrices of degree n with
entries in R. In particular, if S is a subset of Sn(R) with R the field of real
numbers, we denote by S>0 (resp. S≥0) the subset of S consisting of positive
definite (resp. semi-positive definite) matrices. The group SLn(Z) acts on
the set Sn(R) in the following way:

SLn(Z) × Sn(R) 3 (g, A) −→ tgAg ∈ Sn(R).

Let G be a subgroup of GLn(Z). For a subset B of Sn(R) stable under the
action of G we denote by B/G the set of equivalence classes of B with respect
to G. We sometimes identify B/G with a complete set of representatives of
B/G. Two symmetric matrices A and A′ with entries in R are said to be
equivalent with each other with respect to G and write A ∼G A′ if there is
an element X of G such that A′ = A[X]. Let Ln denote the set of half-integral
matrices of degree n over Z, that is, Ln is the set of symmetric matrices of
degree n whose (i, j)-component belongs to Z or 1

2
Z according as i = j or

not.
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1 Review on the algebraicity of L-values of

elliptic modular forms of integral and half-

integral weights

Before stating our main results, we review on the special values of L functions
of elliptic modular forms of integral and half-integral weights. Put Jn =(

On −1n

1n On

)
, where 1n and On denotes the unit matrix and the zero matrix

of degree n, respectively. Furthermore, put

Spn(Z) = {M ∈ GL2n(Z) | Jn[M ] = Jn}.

Let l be an integer or a half-integer, and let Γ be a congruence subgroup of
Spn(Z). We then denote by Ml(Γ ) the space of modular forms of weight l
with respect to Γ, and by Sl(Γ ) the subspace of Ml(Γ ) consisting of cusp
forms. We also denote by Γ0(4) the subgroup of SL2(Z) consisting of matrices
whose left lower entries are congruent to 0 mod N. Let

f(z) =
∞∑

m=1

cf (m)e(mz)

be a normalized Hecke eigenform in Sk(SL2(Z)), and χ be a primitive Dirich-
let character. Then let us define Hecke’s L-function L(s, f, χ) of f twisted
by χ as

L(s, f, χ) =
∞∑

m=1

cf (m)χ(m)m−s.

Then we have the following result (cf. [Sh1]):

Theorem 1.1 There exist complex numbers u±(f) uniquely determined up

to Q
×

multiple such that

L(m, f, χ)(πmuj(f))−1 ∈ Q

for any integer 0 < m ≤ k − 1 and a primitive character χ, where j = + or
− according as (−1)mχ(−1) = 1 or −1.

We remark that we have L(m, f, χ) 6= 0 if m 6= k/2, and L(k/2, f, χ) 6= 0
for infinitely many χ.
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Next let us consider the half-integral weight case. Let

h1(z) =
∞∑

m=1

ch1(m)e(mz)

be a Hecke eigenform in Sk1+1/2(Γ0(4)), and

h2(z) =
∞∑

m=0

ch2(m)e(mz)

be an element of Mk2+1/2(Γ0(4)). For positive integers e and l, let χ(−1)le be

the Dirichlet character corresponding to the extension Q(
√

(−1)le/Q). Let
χ be a primitive character mod N. Then we define

R̃(s, h1, h2, χ) = L(2s − k1 − k2 + 1, ω)
∞∑

m=1

ch1(m)ch2(m)χ(m)m−s,

where ω(d) = χk1−k2
−1 χ2(d). Now let S(h1) be the normalized Hecke eigen-

form in S2k1(SL2(Z)) corresponding to h1 under the Shimura correspondence.
Then the following result is due to Shimura [Sh2].

Theorem 1.2 Assume that k1 > k2. Under the above notation we have

R̃(m + 1/2, h1, h2, χ)(u−(S(h1))π
−k2+1+2m)−1 ∈ Q(h1)Q(h2)

for any integer k2 ≤ m ≤ k1 − 1 and a primitive character χ, where Q(hi) is
the field, generated over Q, by all the Fourier coefficients of hi.

Corollary Let the notation be as above. Assume that k1 > k2 and that
ch1(n), ch2(n) ∈ Q for any n ∈ Z≥0. Then there exists a one-dimensional
Q-vector space Uh1,h2 in C such that

R̃(m + 1/2, h1, h2, χ)π−2m ∈ Uh1,h2

for any integer k2 ≤ m ≤ k1 − 1 and a primitive character χ.
Now we consider the values of R̃(s, h1, h2, χ) at integers. Let

R(s, h1, h2, χ) = L(2s − k1 − k2 + 1, χ2)
∞∑

m=1

ch1(m)ch2(m)χ(m)m−s.
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be the Dirichlet series defined in Section 0. Assume that k1 + k2 is even, and
that the conductor of χ is odd. Then we have

R(s, h1, h2, χ) = (1 − 2−2s+k1+k2−1χ2(2))−1R̃(s, h1, h2, χ).

Hence it suffices to consider the question in Section 0 for R(m,h1, h2, χ) with
integer m.

2 Main results

For a non-negative integer m and a positive integer l, Cohen’s function
H(l,m) is given by H(l,m) = L−m(1 − l). Here

LD(s)

=


ζ(2s − 1), D = 0

L(s, χDK
)
∑
a|f

µ(a)χDK
(a)a−sσ1−2s(f/a), D 6= 0, D ≡ 0, 1 mod 4

0, D ≡ 2, 3 mod 4,

where the positive integer f is defined by D = DKf2 with the discriminant
DK of K = Q(

√
D), χDK

is the Kronecker symbol, µ is the Möbius func-
tion and σs(n) =

∑
d|n ds. Furthermore we define Cohen’s Eisenstein series

El+1/2(z) by

El+1/2(z) =
∞∑

m=0

H(l,m)e(mz).

It is known that El+1/2(z) is a modular form of weight l + 1/2 belonging
to Kohnen’s plus space. Let k and n be positive even integers such that
n ≥ 4, 2k−n ≥ 12. Let h(z) be a Hecke eigenform in Kohnen’s plus subspace
S+

k−n/2+1/2(Γ0(4)) (cf. [Ko]), and S(h) be the normalized Hecke eigenform in

S2k−n(SL2(Z)) corresponding to h under the Shimura correspondence. Let
p be a prime number and l be a positive integer dividing p− 1. Take an l-th
root of unity ζl and a prime ideal p of Q(ζl) lying above p. Let a be an integer
prime to p. Then we have a(p−1)/l ≡ ζ i

l mod p with some i ∈ Z. We then put(
a

p

)
l

= ζ i. We call

(
∗
p

)
l

the l-th power residue symbol mod p. In the case

l = 2, this is the Legendre symbol, and we write it as

(
∗
p

)
as usual. We
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note that this definition of the power residue symbol is different from the
usual one, and depends on the choice of p and ζl except the case l = 2. We

denote by
( ∗

N

)
the Jacobi symbol for a positive odd integer M . Let χ be a

primitive Dirichlet character of conductor N. We assume that N is a square
free odd integer, and write N = p1 · · · pr with p1, · · · , pr prime numbers. Put
lj = ln,pj

= G.C.D(n, pj − 1). For an r-tuple (i1, i2, · · · , ir) of integers put

χ(i1,··· ,ir) = χ
r∏

j=1

(
∗
pj

)ij

lj

.

For two Dirichlet characters η1 and η2 mod N, let Jm(η1, η2) and Jm(η1) be as
those defined in Section 0. By definition, Jm(η1, η2) is an algebraic number.
As in Section 0, we define

R(χ)(s, h, En/2+1/2)

=

l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ(i1,··· ,ir)(2n)J(χ(i1,··· ,ir),
( ∗

N

)
)Jn−1(χ(i1,··· ,ir))

×R(s, h, En/2+1/2, χ(i1,...,ir))Ln(s, S(h), χ(i1,··· ,ir)),

where

Ln(s, S(h), η) =

n/2−1∏
j=1

L(2s − 2j, S(h), η2)

for a primitive character η. We note that R(χ)(s, h, En/2+1/2) does not depend
on the choice of an li-th root of unity ζli and an prime ideal pi of Q(ζli) lying
above pi.

Remark. (1) Let m be an integer s.t. n/2+1 ≤ m ≤ k−n/2− 1. Then the

value
Ln(m,S(h), χ2

(i1,··· ,ir))

πm(n−2) belongs to Qu+(S(h))n/2−1π−n2/4+n/2 for any χ.

In particular if n ≡ 2 mod 4, then it is nonzero for any χ, and if n ≡ 0 mod 4,
then it is nonzero for infinitely many χ.
(2) As will be stated in Section 3, Jn−1(χ(i1,··· ,ir)) is expressed as a product
of Jacobi sums, and it is non-zero algebraic number if χn is rewrote.

Theorem 2.1 There exists a finite dimensional Q-vector space Wh,En/2+1/2

in C such that
R(χ)(m,h,En/2+1/2)

πmn
∈ Wh,En/2+1/2
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for any integer n/2 + 1 ≤ m ≤ k − n/2 − 1 and a character χ of odd square
free conductor such that χn is rewrote.

Theorem 2.2 Let r > dimQ Wh,En/2+1/2
. Let m1,m2, · · · , mr be integers

such that n/2 + 1 ≤ m1,m2, · · · ,mr ≤ k − n/2 − 1 and χ1, χ2, · · · , χr

be Dirichlet characters of odd square free conductors N1, N2, · · · , Nr, re-
spectively such that χn

i is primitive for any i = 1, 2, · · · r. Then the values
R(χ1)(m1, h, En/2+1/2)

πm1n , · · · ,
R(χr)(mr, h, En/2+1/2)

πmrn are linearly dependent over

Q.

Corollary Assume that n ≡ 2 mod 4. Let r and m1, m2, · · · ,mr be as
above. Let χ1, χ2, · · · , χr be Dirichlet characters of odd prime conductors
p1, p2, · · · , pr, respectively such that χn

i is non-trivial for any i = 1, 2, · · · r.

Put li = GCD(n, pi−1). Then the values

{
R(mi, h, En/2+1/2, χi(j))

π2mi

}
1≤i≤r,0≤j≤li−1

are linearly dependent over Q.

We also have a functional equation for R(χ)(s, h, En/2+1/2) :

Theorem 2.3 Let h be as above. Let χ be a primitive character of odd square
free conductor N. Assume that n ≡ 2 mod 4, and that χn is primitive. Put

R(χ)(s, h, En/2+1/2) = N2sτ(χn)−1γn(s)R(χ)(s, h, En/2+1/2),

where τ(χn) is the Gauss sum of χn, and

γn(s) = (2π)−ns

n∏
i=1

π(i−1)/2Γ(s − (i − 1)/2).

Then R(χ)(s, h, En/2+1/2) has an analytic continuation to the whole s-plane,
and has the following functional equation:

R(χ)(k − s, h, En/2+1/2) = R(χ)(s, h, En/2+1/2).

Remark. (1) The series {R(s, h, En/2+1/2, χi(j))}1≤i≤r,0≤j≤li−1 are linearly
independent over C as functions of s.
(2) In the case of n = 2, this type of result was given for R(m,h,E3/2) with
E3/2 Zagier’s Eisenstein series of weight 3/2 by [K-M]. Cohen’s Eisenstein
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series is a holomorphic modular form, where as Zagier’s Eisenstein series is
not. Nevertheless, the former can be regarded as a generalization of the
latter. Therefore, our present result can be regarded as a generalization
of [K-M]. (3) The meromorphy of this type of series was derived in [Sh2]
by using so called the Rankin-Selberg integral expression in a more general
setting, but we don’t know whether the functional equation of the above type
can be directly proved without using the above method.

3 Twisted Koecher-Maaß series

To prove the main results, in this section and the next, we consider the
twisted Koecher-Maaß series of a Siegel modular form. Let F (Z) ∈ Mk(Spn(Z)).
Then F (Z) has the Fourier expansion:

F (Z) =
∑

T∈Ln≥0

cF (T )e(tr(TZ)),

where tr(X) denotes the trace of a matrix X. For N ∈ Z>0, put SLn,N(Z) =
{U ∈ SLn(Z) | U ≡ 1n mod N}, and for T ∈ Ln>0 put eN(T ) = #{U ∈
SLn,N(Z) | T [U ] = T}. For a primitive Dirichlet character χ mod N Let

L(s, F, χ) =
∑

T∈Ln>0/SLn,N (Z)

χ(tr(T ))cF (T )

eN(T )(det T )s

be the twisted Koecher-Maaß series of F of the first kind as in Section 0.
The following two theorems are due to Choie and Kohnen [C-K].

Theorem 3.1 Let F ∈ Sk(Spn(Z)), and χ a primitive character of conduc-
tor N. Put

γn(s) = (2π)−ns

n∏
i=1

π(i−1)/2Γ(s − (i − 1)/2),

and
Λ(s, F, χ) = N2sτ(χ)−1γn(s)L(s, F, χ) (Re(s) >> 0),

where τ(χ) is the Gauss sum of χ. Then Λ(s, F, χ) has an analytic continu-
ation to the whole s-plane and has the following functional equation:

Λ(k − s, F, χ) = (−1)nk/2χ(−1)Λ(s, F, χ).
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Theorem 3.2 Let F and χ be as above. Then there exists a finite dimen-
sional Q-vector space VF in C such that

L(m,F, χ)π−nm ∈ VF

for any primitive character χ and any integer m such that (n + 1)/2 ≤ m ≤
k − (n + 1)/2.

Example. Let n = 1. Take a basis {f1, · · · , fd} of Sk(SL2(Z)) consisting of
normalized Hecke eigenforms. Write f ∈ Sk(SL2(Z)) as

f = a1f1 + · · · + adfd

with a1, · · · , ad ∈ C. Then put wi = aiu+(fi), wd+i = aiu−(fi) (i = 1, · · · , d)

and Vf =
2d∑
i=1

Qwi. Then Vf satisfies the required property for f.

Now let

L∗(s, F, χ) =
∑

T∈Ln>0/SLn(Z)

χ(det(2T ))cF (T )

e(T )(det T )s

be the twisted Koecher-Maaß series of F of the second kind as in Section
0. We will discuss a relation between these two Dirichlet series. Let N be a
positive integer. Let g be a periodic function on Z with a period N and φ a
polynomial in t1, ..., tr. Then for an element u = (a1 mod N, ...., ar mod N) ∈
(Z/NZ)r, the value g(φ(a1, ..., ar)) does not depend on the choice of the
representative u. Therefore we denote this value by g(φ(u)). Now let χ be a
primitive character mod N . For A ∈ Ln>0, put

h(A,χ) =
∑

U∈SLn(Z/NZ)

χ(tr(A[U ])).

The following proposition is due to [[K-M], Proposition 3.1].

Proposition 3.3 Let

F (Z) =
∑

A∈Ln≥0

cF (A)e(tr(AZ))

be an element of Mk(Spn(Z)). Let χ be a Dirichlet character mod N. Assume
N 6= 2. Then we have

L(s, F, χ) =
∑

A∈Ln>0/SLn(Z)

cF (A)h(A,χ)

e(A)(det A)s
.
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For a Dirichlet character χ mod N, let χ(p) be the p-factor of χ so that
χ =

∏
p|N χ(p). For a prime number p put

γn,p = pn2−n(n+1)/2(1 − p−n/2)

(n−2)/2∏
e=1

(1 − p−2e)

or

γn,p = pn2−n(n+1)/2

(n−1)/2∏
e=1

(1 − p−2e)

according as n is even or odd. The following result is a technical tool for
proving our main result.

Theorem 3.4 Let A ∈ Ln>0. Let N be a square free odd integer, and let
N =

∏r
i=1 pi be the prime decomposition of N. Let χ be a primitive Dirichlet

character mod N. For each positive integer i ≤ r, put li = G.C.D(n, pi − 1)
and let u0,i be a primitive li-th root of unity mod pi.
(1). If χ(pi)(u0,i) 6= 1 for some i. Then we have h(A,χ) = 0.
(2). Assume that χ(pi)(u0,i) = 1 for any i. Fix a character χ̃ such that χ̃n = χ.
(2.1) Let n be even. Then we have

h(A,χ) =
r∏

i=1

(−1)n(pi−1)/4γn,pi

×
l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ̃(i1,··· ,ir)(2
n)χ̃(i1,··· ,ir)(det(2A))J(χ̃(i1,··· ,ir),

( ∗
N

)
)Jn−1(χ̃(i1,··· ,ir)).

(2.2) Let n be odd, and assume that χ2 is primitive. Then we have

h(A, χ) =
r∏

i=1

(−1)(n−1)(pi−1)/4γn,pi

×
l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ̃(i1,··· ,ir)(2
n)χ̃(i1,··· ,ir)(det(2A))Jn−1(χ̃(i1,··· ,ir)).

The proof of the above theorem is elementary but is rather lengthy. The
details will be given in [Ka].
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Remark. Let η be a primitive Dirichlet character of odd prime conductor
p. Assume that η2 6= 1. Then we can prove that we have

J(η,

(
∗
p

)
)J(η

(
∗
p

)
, η

(
∗
p

)
) =

(
−1

p

)
η̄(4)p.

(This is not so trivial. For the details, see [Ka].) Hence for A ∈ L2>0 and a
primitive character χ of odd square free conductor N such that χ(p)(−1) = 1
for any prime divisor p of N, we have

h(A,χ) =
∏
p|N

{(
1 +

(
4 det A

p

))(
1 −

(
−1

p

)
p−1

)}
N2

(
−1

N

)
χ̃(4 det A)),

where χ̃ is a character such that χ̃2 = χ. This coincides with (2) of Theorem
3.8 in [K-M].

By Theorem 3.4 and Proposition 3.3 we easily obtain:

Theorem 3.5 Let N, pi, li, u0,i (i = 1, · · · , r) and χ be as in Theorem 3.4,
and let F be an element of Mk(Spn(Z)).
(1). If χ(pi)(u0,i) 6= 1 for some i. Then we have L(s, F, χ) = 0.
(2). Assume that χ(pi)(u0,i) = 1 for any i. Fix a character χ̃ such that χ̃n = χ.
(2.1) Let n be even. Then we have

L(s, F, χ) =
r∏

i=1

(−1)n(pi−1)/4γn,pi

×
l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ̃(i1,··· ,ir)(2
n)J(χ̃(i1,··· ,ir),

( ∗
N

)
)Jn−1(χ̃(i1,··· ,ir))L

∗(s, F, χ̃(i1,i2,··· ,ir)).

(2.2) Let n be odd, and assume that χ2 is primitive. Then we have

L(s, F, χ) =
r∏

i=1

(−1)(n−1)(pi−1)/4γn,pi

×
l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ̃(i1,··· ,ir)(2
n)Jn−1(χ̃(i1,i2,··· ,ir))L

∗(s, F, χ̃(i1,i2,··· ,ir)).
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To give an explicit formula of Jm(χ, η) for primitive characters χ, η mod
N, we define Im(χ, η) as

Im(χ, η) =
∑

Z∈Sm(Z/NZ)

χ(det Z)η(tr(Z)).

Then we have the following two propositions, whose proof will be given pre-
cisely in [Ka].

Proposition 3.6 Let χ and η be primitive character mod an odd prime num-
ber p. Assume that χ2 6= 1 and that η is non-trivial. Put cm(χ, η) = 1 or 0
according as χm−1η = 1 or not.
(1) Assume that m is odd. Then

Im(χ, η) = cm(χ, η)

(
−1

p

)(m−1)/2

p(m−1)/2(p − 1)Jm−1(χ

(
∗
p

)
, η).

(2) Assume that m is even. Then

Im(χ, η) = cm(χ, η)

(
−1

p

)m/2

p(m−2)/2(p−1)χ(−1)J(χ,

(
∗
p

)
)Jm−1(χ

(
∗
p

)
, η).

Proposition 3.7 Let χ, η and p be as in Proposition 3.6.
(1) Assume that m is odd. Then

Jm(χ, η) =

(
−1

p

)(m−1)/2

p(m−1)/2

×{J(χ, χm−1η)Jm−1(χ

(
∗
p

)
, η) + η(−1)Im−1(χ

(
∗
p

)
, η)}.

(2) Assume that m is even. Then

Jm(χ, η) =

(
−1

p

)m/2

p(m−2)/2J(χ,

(
∗
p

)
)

×{J(χ, χm−1

(
∗
p

)
η)Jm−1(χ

(
∗
p

)
, η) + η(−1)Im−1(χ

(
∗
p

)
, η)}.

From the above two propositions we have the following:
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Theorem 3.8 Let χ be a primitive character with a prime conductor p such
that χ2 6= 1.
(1) Let m be odd.
(1.1) Assume that χm 6= 1. Then

Jm(χ

(
∗
p

)i

, χ) =

(
−1

p

)(m−1)/2

p(m−1)/2J(χ

(
∗
p

)i

, χm)Jm−1(χ

(
∗
p

)i+1

, χ).

(1.2) Assume that χm = 1. Then

Jm(χ

(
∗
p

)i

, χ) = pm−1

(
−1

p

)i+1

J(χ

(
∗
p

)i+1

,

(
∗
p

)
)Jm−2(χ

(
∗
p

)i

, χ).

(2) Let m be even.

(2.1) Assume that χm
(

∗
p

)i+1

6= 1. Then

Jm(χ

(
∗
p

)i

, χ)

=

(
−1

p

)m/2−1

J(χ

(
∗
p

)i

,

(
∗
p

)
)J(χ

(
∗
p

)i+1

, χm

(
∗
p

)i+1

)Jm−1(χ

(
∗
p

)i+1

, χ).

(2.2) Assume that χm
(

∗
p

)i+1

= 1. Then

Jm(χ

(
∗
p

)i

, χ) = χ(−1)pm−1J(χ

(
∗
p

)i

,

(
∗
p

)
)Jm−2(χ

(
∗
p

)i

, χ).

Corollary Let χ be a primitive character with an odd square free conductor
N. Assume that χ2 is primitive. Then the value Jm(χ) is nonzero.

4 An explicit formula for the twisted Koecher-

Maaß series of the D-I-I lift

Throughout this section and the next, we assume that n and k are even
positive integers. Let h be a Hecke eigenform of weight k−n/2+1/2 belonging
to Kohnen’s plus space. Then h has the following Fourier expansion:

h(z) =
∑

e

ch(e)e(ez),
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where e runs over all positive integers such that (−1)k−n/2e ≡ 0, 1 mod 4.
Let

S(h)(z) =
∞∑

m=1

cS(h)(m)e(mz)

be the normalized Hecke eigenform of weight 2k − n with respect to SL2(Z)
corresponding to h under the Shimura correspondence. For a prime number p
let βp be a non-zero complex number such that βp+β−1

p = p−k+n/2+1/2cS(h)(p).
For a prime number p, let Qp, and Zp be the field of p-adic numbers, and the
ring of p-adic integers, respectively. We denote by νp the additive valuation
on Qp normalized so that νp(p) = 1, and by ep the continuous homomorphism
from the additive group Qp to C× such that ep(x) = e(x) for x ∈ Z[p−1]. For
a positive definite half integral matrix T of degree n write (−1)n/2 det(2T ) as
(−1)n/2 det(2T ) = dT f2T with dT a fundamental discriminant and fT a positive
integer. We then define the local Siegel series bp(T, s) by

bp(T, s) =
∑

R∈Sn(Qp)/Sn(Zp)

ep(tr(TR))p−νp(µp(R))s (s ∈ C)

for each prime number p, where µp(R) = [RZn
p + Zn

p : Zn
p ]. Then there exists

a polynomial Fp(T,X) in X such that

bp(T, s) = Fp(T, p−s)(1 − p−s)(1 −
(

dT

p

)
pn/2−s)−1

n/2∏
i=1

(1 − p2i−2s)

(cf. [Ki].) We then put

cIn(h)(T ) = ch(|dT |)
∏

p

(pk−n/2−1/2βp)
νp(fT )Fp(T, p−(n+1)/2β−1

p ).

We note that cIn(h)(T ) does not depend on the choice of βp. Define a Fourier
series In(h)(Z) by

In(h)(Z) =
∑

T∈Ln>0

cIn(h)(T )e(tr(TZ)).

In [I] Ikeda showed that In(h)(Z) is a cuspidal Hecke eigenform in Sk(Spn(Z))
and its standard L-function L(s, In(h), St) is given by

L(s, In(h), St) = ζ(s)
n∏

i=1

L(s + k − i, S(h)).
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We call In(h) the Duke-Imamoglu-Ikeda lift (D-I-I lift) of h. Now using the
same argument as in the proof of Theorem 1 of [I-K] we obtain the following.
For the details see [Ka].

Theorem 4.1 Let χ be a primitive Dirichlet character mod N . Then we
have

L∗(s, F, χ) = 2ns{cnR(s, h, En/2+1/2, χ)

n/2−1∏
j=1

L(2s − 2j, S(h), χ2)

+dnch(1)

n/2∏
j=1

L(2s − 2j + 1, S(h), χ2)},

where cn and dn are non-zero rational numbers depending only on n.

Now by the above theorem combined with Theorem 3.5 we obtain:

Theorem 4.2 Let N be a square free odd integer, and N = p1 · · · pr be the
prime decomposition of N. For each i = 1, · · · , r let li = G.C.D(n, pi − 1)
and u0 ∈ Z be a primitive li-th root of unity mod pi.
(1) Assume χ(pi)(ui) 6= 1 for some i. Then L(s, In(h), χ) = 0.
(2) Assume χ(pi)(ui) = 1 for any i. Then

L(s, In(h), χ) = 2ns

l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ̃(i1,··· ,ir)(2n)J(χ̃(i1,··· ,ir),
( ∗

N

)
)Jn−1(χ̃(i1,··· ,ir))

×{cn,NR(s, h, En/2+1/2, χ̃(i1,··· ,ir))

n/2−1∏
j=1

L(2s − 2j, S(h), χ̃2
(i1,··· ,ir))

+dn,Nch(1)

n/2∏
j=1

L(2s − 2j + 1, S(h), χ̃2
(i1,··· ,ir))},

where cn,N and dn,N are non-zero rational numbers depending only on n and
N, and χ̃ is a character s.t. χ̃n = χ.

Remark. In the case n = 2, an explicit formula for L(s, I2(h), χ) was given
by Katsurada-Mizuno [K-M].

18



Corollary Let χ be a Dirichlet character of odd square free conductor N
such that χn is primitive. Then for any integer n/2 + 1 ≤ m ≤ k − n/2 − 1

L(m, In(h), χn)

πmn

= {γn,N

R(χ)(m, h,En/2+1/2)

πmn
+ δn,Nch(1)

M(χ)(m,S(h))

πmn
},

where γn,N and δn,N are non-zero numbers, and

M(χ)(m,S(h)) =

l1−1∑
i1=0

· · ·
lr−1∑
ir=0

χ(i1,··· ,ir)(2n)J(χ(i1,··· ,ir),
( ∗

N

)
)Jn−1(χ(i1,··· ,ir))

×
n/2∏
j=1

L(2m − 2j + 1, S(h), (χ(i1,··· ,ir))
2).

5 Proof of main results and some comments

We prove the results in Section 2.
Proof of Theorem 2.1. Assume that n ≡ 2 mod 4. Then we have ch(1) = 0,
and by Theorem 3.1 and Corollary to Theorem 4.2, we have

R(χ)(m,h,En/2+1/2)

πmn
∈ Qu1 ⊗Q VIn(h)

with some complex number u1, where VIn(h) is the Q-vector space associated
with In(h) in Theorem 3.1. Assume that n ≡ 0 mod 4. By Theorem 1.1 we
have

M(χ)(m,S(h))

πmn
∈ Qu−(S(h))n/2π−n2/4.

Hence, again by Theorem 3.1 and Corollary to Theorem 4.2,

R(χ)(m,h,En/2+1/2)

πmn
∈ Qu1 ⊗Q VIn(h) + Qu2

with complex numbers u1 and u2. This proves the assertion.
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Proof of Theorem 2.2 and its corollary. Theorem 2.2 follows directly
from Theorem 2.1. We note that Jn−1(χ(i1,··· ,ir)) is a non-zero algebraic num-

ber by virtue of Corollary to Proposition 3.8. We also note that
Ln(m,S(h), η)

πm(n−2)

belongs to Qu+(S(h))n/2−1π−n2/4+n/2, and nonzero for any integer n/2+1 ≤
m ≤ k − n/2 − 1 and primitive character η. This proves the corollary.

Proof of Theorem 2.3. The assertion follows from Theorem 3.2.

Now we give some comments. First we are interested in the dimension of
Wh,En/2+1/2

over Q. Therefore we propose the following problem.

Problem 1. Give dimQ Wh,En/2+1/2
explicitly or estimate it.

This problem is reduced to the following problem:

Problem 2. Give dimQ VIn(h) explicitly or estimate it.

Next we consider a generalization or a refinement of Theorem 2.1. Namely
we propose the following conjecture.
Conjecture. Let h1(z) be a Hecke eigenform in S+

k1+1/2(Γ0(4)) and h2(z) ∈
Mk2+1/2(Γ0(4)) with k1 ≥ k2 + 2. Assume that ch2(m) ∈ Q for any m ∈ Z≥0.
Then there exists a finite dimensional Q-vector space Wh1,h2 ⊂ C such that

R(m,h1, h2, χ)π−2m ∈ Wh1,h2

for any k2 + 1 ≤ m ≤ k1 − 1 and any primitive character χ.

Problem 3. Prove Theorem 2.1 without using the relation between the
twisted Koecher-Maaß series of the Duke-Imamoglu-Ikeda lift and the twisted
Rankin-Selberg series of modular forms of half-integral weight.
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