1,012 research outputs found

    SU(3)X SU(2)XU(1) Chiral Models from Intersecting D4-/D5-branes

    Full text link
    We clarify RR tadpole cancellation conditions for intersecting D4-/D5-branes. We find all of the D4-brane models which have D=4 three-generation chiral fermions with the SU(3)XSU(2)XU(1)^n symmetries. For the D5-brane case, we present a solution to the conditions which gives exactly the matter contents of standard model with U(1) anomalies.Comment: 6 pages, submitted to Progress Letter

    First ALMA Observation of a Solar Plasmoid Ejection from an X-ray Bright Point

    Get PDF
    Eruptive phenomena such as plasmoid ejections or jets are an important feature of solar activity with the potential for improving our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 A EUV line of Helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with AIA, in soft X-rays with Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal 10^5 K plasma that is optically thin at 100 GHz, or else a 10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.Comment: 10 page, 5 figures, accepted for publication in Astrophysical Journal Letter. The movie can be seen at the following link: http://hinode.nao.ac.jp/user/shimojo/data_area/plasmoid/movie5.mp

    Dynamics and plasma properties of an X-ray jet from SUMER, EIS, XRT and EUVI A & B simultaneous observations

    Full text link
    Small-scale transient phenomena in the quiet Sun are believed to play an important role in coronal heating and solar wind generation. One of them named as "X-ray jet" is the subject of our study. We indent to investigate the dynamics, evolution and physical properties of this phenomenon. We combine spatially and temporally multi-instrument observations obtained simultaneously with the SUMER spectrometer onboard SoHO, EIS and XRT onboard Hinode, and EUVI/SECCHI onboard the Ahead and Behind STEREO spacecrafts. We derive plasma parameters such as temperatures and densities as well as dynamics by using spectral lines formed in the temperature range from 10 000 K to 12 MK. We also use image difference technique to investigate the evolution of the complex structure of the studied phenomenon. With the available unique combination of data we were able to establish that the formation of a jet-like event is triggered by not one but several energy depositions which are most probably originating from magnetic reconnection. Each energy deposition is followed by the expulsion of pre-existing or new reconnected loops and/or collimated flow along open magnetic field lines. We derived in great detail the dynamic process of X-ray jet formation and evolution. We also found for the first time spectroscopically in the quiet Sun a temperature of 12~MK and density of 4 10^10~cm^-3 in a reconnection site. We raise an issue concerning an uncertainty in using the SUMER Mg X 624.9 A line for coronal diagnostics. We clearly identified two types of up-flow: one collimated up-flow along open magnetic field lines and a plasma cloud formed from the expelled BP loops. We also report a cooler down-flow along closed magnetic field lines. A comparison is made with a model developed by Moreno-Insertis \etal\ (2008).Comment: 15 pages, 15 figure

    A First Comparison of Millimeter Continuum and Mg II Ultraviolet Line Emission from the Solar Chromosphere

    Full text link
    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph (IRIS). The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun's continuum emission of size 2.4×2.32.4' \times 2.3' was obtained by ALMA at a wavelength of 1.25 mm (239 GHz) using mosaicing techniques. A contemporaneous map of size 1.9×2.91.9'\times 2.9' was obtained in the Mg II h doublet line at 2803.5\AA\ by IRIS. Both mm/submmλ-\lambda continuum emission and ultraviolet (UV) line emission are believed to originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this poorly understood layer of the solar atmosphere. While a clear correlation between mm-λ\lambda brightness temperature TBT_B and the Mg II h line radiation temperature TradT_{rad} is observed the slope is <1<1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and/or the Mg II h line source function includes a scattering component. There is a significant offset between the mean TBT_B(1.25 mm) and mean TradT_{rad}(Mg II), the former being 35%\approx 35\% greater than the latter. Partitioning the maps into "sunspot", "quiet regions", and "plage regions" we find that the slope of the scatter plots between the IRIS Mg II h line TradT_{rad} and the ALMA brightness temperature TBT_B is 0.4 (sunspot), 0.56 (quiet regions), and 0.66 (plage regions). We suggest that this change may be caused by the regional dependence of the formation heights of the IRIS and ALMA diagnostics, and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.Comment: 8 pages, 2 figure

    Hard X-ray emission from a flare-related jet

    Get PDF
    &lt;p&gt;&lt;b&gt;Aims:&lt;/b&gt; We aim to understand the physical conditions in a jet event which occurred on the 22nd of August 2002, paying particular attention to evidence for non-thermal electrons in the jet material.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; We investigate the flare impulsive phase using multiwavelength observations from the Transition Region and Coronal Explorer (TRACE) and the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) satellite missions, and the ground-based Nobeyama Radioheliograph (NoRH) and Radio Polarimeters (NoRP).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. We present radio observations which confirm the presence of non-thermal electrons present in the jet at this time. The evolution of the event is best compared with the magnetic reconnection jet model in which emerging magnetic field interacts with the pre-existing coronal field. We calculate an apparent jet velocity of ~500 km s-1 which is consistent with model predictions for jet material accelerated by the &lt;b&gt;J&lt;/b&gt; X &lt;b&gt;B&lt;/b&gt; force resulting in a jet velocity of the order of the Alfvén speed (~100–1000 km s-1).&lt;/p&gt

    Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli

    Full text link
    In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2

    Ultraviolet spectroscopy of narrow coronal mass ejections

    Get PDF
    We present Ultraviolet Coronagraph Spectrometer (UVCS) observations of 5 narrow coronal mass ejections (CMEs) that were among 15 narrow CMEs originally selected by Gilbert et al. (2001). Two events (1999 March 27, April 15) were "structured", i.e. in white light data they exhibited well defined interior features, and three (1999 May 9, May 21, June 3) were "unstructured", i.e. appeared featureless. In UVCS data the events were seen as 4-13 deg wide enhancements of the strongest coronal lines HI Ly-alpha and OVI (1032,1037 A). We derived electron densities for several of the events from the Large Angle Spectrometric Coronagraph (LASCO) C2 white light observations. They are comparable to or smaller than densities inferred for other CMEs. We modeled the observable properties of examples of the structured (1999 April 15) and unstructured (1999 May 9) narrow CMEs at different heights in the corona between 1.5 and 2 R(Sun). The derived electron temperatures, densities and outflow speeds are similar for those two types of ejections. They were compared with properties of polar coronal jets and other CMEs. We discuss different scenarios of narrow CME formation either as a jet formed by reconnection onto open field lines or CME ejected by expansion of closed field structures. Overall, we conclude that the existing observations do not definitively place the narrow CMEs into the jet or the CME picture, but the acceleration of the 1999 April 15 event resembles acceleration seen in many CMEs, rather than constant speeds or deceleration observed in jets.Comment: AASTeX, 22 pages, incl. 3 figures (2 color) and 3 tables. Accepted for publication in Ap.

    First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun

    Full text link
    Various solar features can be seen on maps of the Sun in the mm and sub-mm wavelength range. The recently installed Atacama Large Millimeter/submillimeter Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA the first important step is to compare ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. First we identify different structures in the solar atmosphere seen in the optical, IR and EUV parts of the spectrum (quiet Sun (QS), active regions (AR), prominences on the disc, magnetic inversion lines (IL), coronal holes (CH) and coronal bright points (CBPs)) in a full disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and compare them with the corresponding QS level. A full disc solar image at 1.21 mm obtained on December 18, 2015 during a CSV-EOC campaign with ALMA is calibrated and compared with full disc solar images from the same day in H\alpha, in He I 1083 nm core, and with SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the ALMA image. Positions of the QS, ARs, prominences on the disc, ILs, CHs and CBPs are identified in the ALMA image. At 1.21 mm ARs appear as bright areas (but sunspots are dark), while prominences on the disc and CHs are not discernible from the QS background, although having slightly less intensity than surrounding QS regions. ILs appear as large, elongated dark structures and CBPs correspond to ALMA bright points. These results are in general agreement with sparse earlier measurements at similar wavelengths. The identification of CBPs represents the most important new result.Comment: 9 pages, 3 figure
    corecore