10,866 research outputs found

    Spontaneous exciton dissociation in carbon nanotubes

    Get PDF
    Simultaneous photoluminescence and photocurrent measurements on individual single-walled carbon nanotubes reveal spontaneous dissociation of excitons into free electron-hole pairs. Correlation of luminescence intensity and photocurrent shows that a significant fraction of excitons are dissociating during their relaxation into the lowest exciton state. Furthermore, the combination of optical and electrical signals also allows for extraction of the absorption cross section and the oscillator strength. Our observations explain the reasons for photoconductivity measurements in single-walled carbon nanotubes being straightforward despite the large exciton binding energies.Comment: 4 pages, 3 figure

    Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing

    Get PDF
    High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Gate-controlled generation of optical pulse trains using individual carbon nanotubes

    Get PDF
    We report on optical pulse-train generation from individual air-suspended carbon nanotubes under an application of square-wave gate voltages. Electrostatically-induced carrier accummulation quenches photoluminescence, while a voltage sign reversal purges those carriers, resetting the nanotubes to become luminescent temporarily. Frequency domain measurements reveal photoluminescence recovery with characteristic frequencies that increase with excitation laser power, showing that photoexcited carriers quench the emission in a self-limiting manner. Time-resolved measurements directly confirm the presence of an optical pulse train sychronized to the gate voltage signal, and flexible control over pulse timing and duration is demonstrated.Comment: 4 pages, 4 figure

    Interminiband Rabi oscillations in biased semiconductor superlattices

    Full text link
    Carrier dynamics at energy level anticrossings in biased semiconductor superlattices, was studied in the time domain by solving the time-dependent Schroedinger equation. The resonant nature of interminiband Rabi oscillations has been explicitly demonstrated to arise from interference of intrawell and Bloch oscillations. We also report a simulation of direct Rabi oscillations across three minibands, in the high field regime, due to interaction between three strongly coupled minibands.Comment: 13 pages, 16 figure

    Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    Full text link
    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient.Comment: 4 page

    Slow Radiation-Driven Wind Solutions of A-Type Supergiants

    Get PDF
    The theory of radiation-driven winds succeeded in describing terminal velocities and mass loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars, that could explain the origin of these discrepancies. We solve the 1-D hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization's changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical Wind Momentum-Luminosity Relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced.Comment: 7 Pages, 3 figures, Astrophysical Journal, Accepte
    • …
    corecore