2,497 research outputs found

    New Einstein-Hilbert-type Action and Superon-Graviton Model(SGM) of Nature

    Full text link
    A nonlinear supersymmetric(NLSUSY) Einstein-Hilbert(EH)-type new action for unity of nature is obtained by performing the Einstein gravity analogue geomtrical arguments in high symmetry spacetime inspired by NLSUSY. The new action is unstable and breaks down spontaneously into E-H action with matter in ordinary Riemann spacetime. All elementary particles except graviton are composed of the fundamental fermion "superon" of Nambu-Goldstone(NG) fermion of NLSUSY and regarded as the eigenstates of SO(10) super-Poincar\'e (SP) algebra, called superon-graviton model(SGM) of nature. Some phenomenological implications for the low energy particle physics and the cosmology are discussed. The linearization of NLSUSY including N=1 SGM action is attempted explicitly to obtain the linear SUSY local field theory, which is equivalent and renormalizable.Comment: 37 pages, Latex, Based on a talk by K. Shima at International Conference on Mathematics and Nucler Physics for the 21st Century, March 8-13, 2003, Atomic Energy Authority, Cairo, Egyp

    Torsion-induced persistent current in a twisted quantum ring

    Get PDF
    We describe the effects of geometric torsion on the coherent motion of electrons along a thin twisted quantum ring. The geometric torsion inherent in the quantum ring triggers a quantum phase shift in the electrons' eigenstates, thereby resulting in a torsion-induced persistent current that flows along the twisted quantum ring. The physical conditions required for detecting the current flow are discussed.Comment: 9 pages, 3 figure

    On Einstein-Hilbert type action of superon-graviton model(SGM)

    Get PDF
    The fundamental action of superon-graviton model(SGM) of Einstein-Hilbert type for space-time and matter is written down explicitly in terms of the fields of the graviton and superons by using the affine connection formalism and the spin connection formalism. Some characteristic structures including some hidden symmetries of the gravitational coupling of superons are manifested (in two dimensional space-time) with some details of the calculations. SGM cosmology is discussed briefly.Comment: 20 pages, Latex, some more discussions and new references adde

    Application of photodiodes to the detection of electromagnetic bursts

    Get PDF
    A new type of photodiode + scintillator (1 m2 x 1 cm) detector is developed to detect the large electro-magnetic burst under an EX-chamber. The threshold burst size is found to be 4.3 x 10 the 5 particles at the center of the scintillator. Therefore a gamma-ray family of 10 TeV is detectable by it, when it is set under 14 r.1. of iron. In addition, a very fast (2.4 nsec width) and very bright (correspond to 10 to the 6 particles) scintillation pulse has become avarable for this study

    Anomalous phase shift in a twisted quantum loop

    Full text link
    Coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.Comment: 13 paes, 5 figure

    Flux-free conductance modulation in a helical Aharonov-Bohm interferometer

    Full text link
    A novel conductance oscillation in a twisted quantum ring composed of a helical atomic configuration is theoretically predicted. Internal torsion of the ring is found to cause a quantum phase shift in the wavefunction that describes the electron's motion along the ring. The resulting conductance oscillation is free from magnetic flux penetrating inside the ring, which is in complete contrast with the ordinary Aharonov-Bohm effect observed in untwisted quantum rings.Comment: 10 pages, 4 figure

    The volume of Gaussian states by information geometry

    Get PDF
    We formulate the problem of determining the volume of the set of Gaussian physical states in the framework of information geometry. That is, by considering phase space probability distributions parametrized by the covariances and supplying this resulting statistical manifold with the Fisher-Rao metric. We then evaluate the volume of classical, quantum and quantum entangled states for two-mode systems showing chains of strict inclusion

    VEGF(164)-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization

    Get PDF
    Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF(164) increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF(164)-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF(164)-deficient (VEGF(120/188)) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF(+/+)) controls. In contrast, administration of a VEGFk-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte-mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF(164) selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined
    • 

    corecore