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Torsion-induced persistent current in a twisted

quantum ring
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Abstract. We describe the effects of geometric torsion on the coherent motion of
electrons along a thin twisted quantum ring. The geometric torsion inherent in the
quantum ring triggers a quantum phase shift in the electrons’ eigenstates, thereby
resulting in a torsion-induced persistent current that flows along the twisted quantum
ring. The physical conditions required for detecting the current flow are discussed.
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1. INTRODUCTION

Spatial confinement of particle’s motion to low-dimensional space has an enormous

influence on the quantum-mechanical properties of the particle. Of particular interests

are systems in which a particle’s motion is constrained to a thin curved layer by a strong

confining force. Due to the confinement, excitation energies of the particle in a direction

normal to the layer are significantly higher than those in a direction tangential to it; as

a result, one can define an effective Hamiltonian that involves an anisotropic effective

mass and a curvature-induced scalar potential [1, 2, 3]. This implies that the behavior

of quantum particles that are confined to a thin curved layer is different from that of

quantum particles on a flat plane, even in the absence of external field (except for the

confining force). The effect of curvature was first suggested by Jensen and Koppe [1],

and this was followed by subsequent studies that were conducted out of mathematical

curiosity [4]. In recent years, the effect of curvature has been reconsidered from the

viewpoints of condensed matter physics [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], owing to

technological progress that has enabled the fabrication of nanostructures with curved

geometries [16, 17, 18, 19, 20, 21].

In addition to surface curvature, geometric torsion is another important parameter

relevant to quantum mechanics in low-dimensional nanostructures. A torsion effect is

manifested in quantum transport in a thin twisted nanowire with a finite cross section.

When a quantum particle moves along a long thin twisted wire, it exhibits a quantum

phase shift whose magnitude is proportional to the integral of the torsion along the wire

[22, 23]. This torsion-induced phase shift is attributed to an effective vector potential

that appears in the effective Hamiltonian defined for the movement of a particle in a

twisted nanowire.

The mathematical mechanism for the occurrence of the effective vector potential

was demonstrated by Takagi and Tanzawa [22], and independently by Magarill and

Éntin [24]. Their results imply various intriguing phenomena purely originating from

geometric torsion. For instance, the torsion-induced phase shift may give rise to a novel

class of persistent current flow along a closed loop of a twisted wire; it is novel in the

sense that no magnetic field need to penetrate inside the loop, which is in contrast with

the ordinary persistent current [25, 26, 27, 28, 29, 30, 31, 32] observed in a non-twist

quantum loop. However, optimal physical conditions as well as geometric parameters in

order to measure those phenomena have been overlooked so far. Quantitative discussions

as to what degree of torsion is necessary to make the phenomena be measurable in real

experiments are important from both fundamental and practical viewpoints.

In this article, we have investigated the quantum state of electrons in a closed loop

of a twisted wire, i.e. a twisted quantum ring. The wire consists of twisted atomic

configuration, and its centroidal axis is embedded in a flat plane; these assumptions

mean that the torsion in our system is defined with respect to a twisting crystalline

reference frame. We have revealed that the magnitude of the torsion-induced persistent

current I comes within a range of existing measurement techniques under appropriate
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conditions; this indicates the significance of torsion-induced quantum phase shift in the

study of actual nanostructures, besides its theoretical interest. It should be emphasized

that the persistent current I we have considered is free from a magnetic field penetrating

through the ring, and thus differs inherently from the counterpart observed in untwisted

rings.

2. QUANTUM STATE IN A TWISTED WIRE

In this section, we derive an explicit form of the effective vector potential in line with

the discussions presented in reference [22]. Let us consider an electron propagating

in a long thin curved cylinder with a weakly twisted atomic configuration (figure 1).

For simplicity, the cylinder is assumed to have a circular cross section with constant

diameter d. We introduce orthogonal curvilinear coordinates (q0, q1, q2) such that q0
parametrizes the centroidal axis C of the curved cylinder (i.e. the curve q1 = q2 = 0

coincides with C). We assume that C is embedded in a flat plane so that C itself has

no torsion; therefore, the torsion of the present system is a consequence of the twisted

atomic structure around the axis C of the conducting cylinder.

A point on C is given by the position vector r ≡ r(q0). Similarly, a point in the

vicinity of C is represented by

R = r(q0) + q1e1(q0) + q2e2(q0), (1)

where the set (e0, e1, e2) with e0 ≡ ∂0R and |e1| = |e2| = 1 forms a right-handed

orthogonal triad; we use the notation ∂a ≡ ∂/∂qa (a = 0, 1, 2) throughout the paper.

Here, the unit vectors e1 and e2 span the cross section normal to C, and they rotate

along C with the same rotation rate as that of the atomic configuration. To be precise,

the q0-dependences of e1 and e2 are chosen such that the torsion τ defined by

τ = e2 · ∂0e1 (2)

conforms to that of the twisted atomic structure. Using continuum approximation, we

obtain the Schrödinger equation for the twisted quantum cylinder as

− h̄2

2m∗

2∑
a,b=0

1
√
g
∂a

(√
ggab∂b

)
ϕ+ V ϕ = Eϕ. (3)

Here, m∗ is the effective mass of the electron, and V = V (q) with q ≡ (q2
1 + q2

2)
1/2

is a strong confining potential that confines the electron’s motion to the vicinity of

C. gab are elements of the matrix [gab], which is the inverse of [gab] whose elements are

gab = ∂aR ·∂bR and g = det[gab] [33]. From equation(1), we obtain the following explicit

forms of gab:

g00 = γ−4, g0a = γ−4τϵ0abqb,

gab = δab + γ−4τ 2
(
|q|2δab − qaqb

)
, [a, b = 1, 2] (4)

where γ = (1 − κaqa)
1/2 and κa = e0 · ∂0ea; the summation convention was used in

equation (4). The quantity κ ≡ (κ2
1 + κ2

2)
1/2 represents the local curvature of C. Note

that both τ and κ are functions only of q0.
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Figure 1. Sketch of a twisted quasi-one dimensional wire with a circular cross section.
The mesh indicates the curvilinear coordinate (q0, q1, q2) used in this study. Geometric
torsion of the atomic configuration along the cylindrical axis is represented by the
rotation of the reference frame in cross section (see text).

Hereafter, we assume that the geometric modulation of the cylinder (i.e. torsion

and curvature) is sufficiently smooth and small so that the relations κd≪ 1 and τd≪ 1

are satisfied. Under these conditions, equation(3) is reduced to [22]

µ

[(
∂2

1 + ∂2
2

)
+
(
∂0 −

iτL

h̄

)2

+
κ2

4

]
ϕ+ V ϕ = Eϕ, (5)

where µ ≡ −h̄2/(2m∗) and L ≡ −ih̄(q1∂2 − q2∂1) is the angular momentum operator in

the cross section. The solution for equation(5) is assumed to have the form

ϕ(q0, q1, q2) = ψ(q0)
N∑

j=1

cjuj(q1, q2). (6)

Here uj(q1, q2) is an N -fold degenerate eigenfunction of the operator of H⊥ ≡
µ (∂2

1 + ∂2
2) + V (q) that is invariant to the rotation of the coordinates q1, q2. This

means that uj(q1, q2) is an eigenfunction of L such that

Luj(q1, q2) = h̄mjuj(q1, q2), (7)

where mj is an integer. Thus, we multiply both sides of equation(5) with
∑

j c
∗
ju

∗
j(q1, q2)

and integrate with respect to q1 and q2 in order to obtain an effective one-dimensional

equation,

µ

(∂0 −
iτ⟨L⟩
h̄

)2

+
κ2

4
− τ 2

h̄2

(
⟨L2⟩ − ⟨L⟩2

)ψ(q0) = ϵψ(q0), (8)

where ⟨L⟩ = h̄
∑

j |cj|2mj and ϵ is the eigenenergy of an electron moving in the axial

direction. The product τ⟨L⟩ in parentheses is identified to the effective vector potential

mentioned earlier.

3. TORSION-INDUCED PERSISTENT CURRENT

We now consider a closed loop of a twisted quantum wire with a circular cross section of

constant radius R2, which we call a twisted quantum ring. For simplicity, the centroidal

axis C of the ring is set to be a circle of radius R1 ≫ R2, which results in a constant

curvature κ ≪ 1/R2 (i.e. q0-independent). In addition, we assume that the torsion τ
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Figure 2. Twisted quantum ring encircling external current flow Iext. A magnetic
field B induced along the ring breaks the time reversal symmetry of the system, thus
resulting in a torsion-induced persistent current I parallel to B.

of the atomic configuration around C is constant throughout the ring and satisfies the

condition τR2 ≪ 1 (generalization to the case in which κ and/or τ are q0-dependent

is straightforward). Hence, an electron’s motion in the twisted ring is described by

equation(8), from which we obtain

ψ(q0) = ψunt(q0) exp
(
−iτ
h̄

∫ q0

0
⟨L⟩dq′0

)
, (9)

where ψunt ∝ exp(−ikq0) is the eigenfunction of an untwisted ring (i.e. τ ≡ 0). An

additional quantum phase proportional to τ implies the presence of a torsion-induced

persistent current throughout the ring, as will be proved below.

Equation(9) shows that the condition ⟨L⟩ ̸= 0 is necessary for the presence of

a torsion-induced persistent current. The condition can be realized by applying an

external current Iext that penetrates through the center of the ring, as shown in figure

2. Using the polar coordinate system (r, θ) with respect to the circular cross section, L

in equation(5) is rewritten as

LB = −ih̄ ∂
∂θ

− eBr2

2
, (10)

where B = µ0Iext/ℓ, ℓ = 2πR1 and µ0 is the permeability constant. The confining

potential V (r) is set to be a parabolic well centered at r = 0, V (r) = m∗ω2
pr

2/2, where

ωp characterizes the steepness of the potential. Hence, the lowest energy eigenstate u0

in the cross section is given by [34, 35]

u0(r) =

√
m∗Ω

πh̄
exp

(
−m

∗Ω

2h̄
r2
)
, (11)

where Ω =
√
ω2

p + (ωc/2)2 and ωc = eB/m∗ is the cycrotron frequency. As a

consequence, the expectation value of LB with respect to u0 reads

⟨LB⟩ =
∫ ∞

0
rdr

∫ 2π

0
dθu∗0LBu0 = − h̄eB

2m∗Ω
, (12)

or equivalently,

⟨LB⟩ = − eµ0h̄

2ℓm∗
[
ω2

p +
(

eµ0

2ℓm∗ Iext

)2
]1/2

Iext. (13)



Torsion-induced persistent current in a twisted quantum ring 6

From equation(13), we see that ⟨LB⟩ ̸= 0 if Iext ̸= 0.

The persistent current I driven by τ is evaluated by considering the periodic

boundary condition ψ(q0 + ℓ) = ψ(q0) that holds for the twisted ring. Since ψunt(q0) ∝
exp(−ikq0), it follows from equation(9) that

exp(−ikℓ) exp
(
− i

h̄
τ⟨LB⟩ℓ

)
= 1, (14)

or equivalently,

k =
2π

ℓ
α− τ⟨LB⟩

h̄
≡ kα, (α = 0,±1,±2 · · ·). (15)

The current carried by a single electron in the αth eigenstate is Iα = evα/ℓ = eh̄kα/(m
∗ℓ)

[36]. The total persistent current I in a ring containing N electrons at zero temperature

is obtained by summing the contributions from all eigenstates with energies less than

EF . It is known that I for odd N , denoted by Iodd, differs from that for even N , denoted

by Ieven [36]‡. In fact, straightforward calculation yields

Iodd = 2 ×
(N−1)/2∑

α=−(N−1)/2

Iα = 2 ×
(N−1)/2∑

α=−(N−1)/2

eh̄

m∗ℓ

(
2π

ℓ
α− τ⟨LB⟩

h̄

)

= − evF

ℓ
p, for − 2 ≤ p < 2 (16)

and

Ieven = 2 ×
N/2∑

α=−N/2+1

Iα =
evF

ℓ
(2 − p) , for 0 ≤ p < 4 (17)

where vF ≡ πh̄N/(m∗ℓ) and p = 4τ⟨LB⟩ℓ/h. We note that Iodd(p) = Iodd(p + 4) and

Ieven(p) = Ieven(p + 4). The periodicities of Iodd and Ieven stem from the fact that

only the states |kα| ≤
√

2m∗EF/h̄ contribute to the current; if |kα| for a given α exceeds√
2m∗EF/h̄ by imposing a sufficiently large (or small) ⟨LB⟩, the state kα becomes vacant

and instead the state kα − 2π/ℓ is occupied (See reference [36] for details).

Since precise control ofN is difficult experimentally, we assume an ensemble average

over many experimental realizations of isolated twisted rings to obtain (Iodd + Ieven)/2,

namely,

I = I(p) =

 0 for p = 0,
evF

ℓ
(1 − p) for 0 < p < 2,

(18)

where I(p) = I(p+ 2).

4. ESTIMATION OF THE INDUCED CURRENT

In order to estimate the magnitude of I observed in experiments, we consider

a twisted silver quantum ring. Successful syntheses of ultrathin crystalline silver

‡ It is noteworthy that a complete description of the sign and magnitude of the persistent current for
non-twisted rings has been recently proposed in reference [37] by considering the role of electron-electron
interactions.
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Figure 3. Stepwise behavior of I for the twisted ring with R1 = 1.0µm, R2 = 1.0nm
and τ = 1/ℓ. Except at Iext = 0, the magnitude of I is almost invariant to the changes
in Iext and τ .

nanowires of nanometer scale width and micrometer scale length have been reported

[38, 39, 40], followed by theoretical studies on their structural and transport properties

[41, 42, 43, 44]. Such nanowires with high aspect ratios (i.e. the ratio of length to width)

may be candidates for fabricating a twisted quantum ring. It should be borne in mind,

however, that the applicability of our theory is not limited to a specific material but to

general mesoscopic rings with twisted geometries.

Figure 3 is a plot of I as a function of Iext as given in equation(18). We have

set R1 = 1µm, R2 = 1nm by referring to an actual length and radius of the silver

nanowires presented in references [38, 39, 40], and τ = 1/ℓ (i.e., one twist for one

round) for simplicity. The Fermi velocity in silver is vF = 1.39 × 106m/s [45] , and the

characteristic energy scale h̄ωp that corresponds to the cross-sectional radius R2 = 1nm

is estimated by h̄ωp = 0.1 eV from the relation h̄ωp ∼ m∗ω2
pR

2
2/2 and m∗ = 9×10−31 kg

for silver. In figure 3, we observe a stepwise increase in I that jumps from I = −35.4nA

(for Iext < 0) to I = +35.4nA (for Iext > 0). Except at Iext = 0, the magnitude of I is

almost invariant to the changes in Iext and τ . This constant behavior of I is attributed

to the fact that under the present conditions, p is much less than unity; as a result,

I ∼ evF

ℓ
for Iext > 0 and I ∼ −evF

ℓ
for Iext < 0, respectively, as seen from equation(18).

The most important observation is the amplitude of I being 35.4nA that is

comparable with the values obtained by using conventional measurement techniques

[25, 26, 27, 28, 29, 30, 31]. This result indicates the physical significance of the torsion-

induced quantum phase shift in actual nanostructures with twisted geometries. We

emphasize that the mechanism by which a persistent current is induced in our system

differs inherently from its counterpart in an untwisted ring, in the latter of which

quantum phase shift occurs as the result of the application of an external magnetic

field that threads the center of the ring.
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5. CONCLUDING REMARKS

It deserves comments on other possible apparatus that exhibit torsion-induced current

flow. In the present work, an external current Iext was assumed to thread the center

of the ring in order to obtain a non-zero expectation value of the angular momentum

of the cross-sectional wave function. Differing from the manner, we may directly apply

an external magnetic field in a direction tangential to a twisted structure. For instance,

let us consider a twisted wire (not ring) both ends of which are connected by a lead,

and apply a magnetic field of the order of one gauss in a direction tangential to the

wire. Such an apparatus functions in a way similar to that considered in Section 3,

and therefore, it causes torsion-induced current flow in the loop composed of the wire

and lead. To date, many attempts have been done to synthesize [46, 47] and simulate

[48, 49] a various kind of twisted nanowires. Their results may give a clue to build a

set-up toward experimental test of our theoretical predictions.

In conclusion, we have demonstrated that a novel type of persistent current is

induced in a quantum coherent ring formed by a long thin twisted quantum ring. This

persistent current is a result of the geometric torsion of the ring that causes a quantum

phase shift in the eigenstates of the electrons moving in the ring. The magnitude of the

persistent current is within a realm of the results obtained from laboratory experiments;

this indicates the importance of torsion-induced phenomena in influencing the physical

properties of actual nanostructures with twisted geometries.

Acknowledgments

We are grateful to K Yakubo for fruitful discussions, and to an anonymous referee

for bringing reference [24] to our attention. One of the authors (HT) adcknowledges

K A Mitchell for his helpful advices and K W Yu for hospitalities during the stay in

The Chinese University of Hong Kong. HT also thanks the financial support from

JSPS Research Fellowships for Young Scientists. HS thanks M Arroyo for his help and

hospitality in using the facility of UPC. This work is supported by a Grant-in-Aid for

Scientific Research from the MEXT, Japan.

References

[1] Jensen H and Koppe H 1971 Ann. Phys. 63 586
[2] da Costa R C T 1981 Phys. Rev. A 23 1982
[3] Maraner P 1995 J. Phys. A: Math. Gen. 28 2939
[4] See, for instance, Schuster P C and Jaffe R L 2003 Ann. Phys. 307 132, and references therein.
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