22 research outputs found

    Improvement of different vaccine delivery systems for cancer therapy

    Get PDF
    Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs) have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs) such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP) have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development

    In Silico Analysis of Six Known Leishmania major Antigens and In Vitro Evaluation of Specific Epitopes Eliciting HLA-A2 Restricted CD8 T Cell Response

    Get PDF
    Leishmaniasis is currently a serious health as well as economic problem in underdeveloped and developing countries in Africa, Asia, the Near and Middle East, Central and South America and the Mediterranean region. Cutaneous leishmaniasis is highly endemic in Iran, remarkably in Isfahan, Fars, Khorasan, Khozestan and Kerman provinces. Since effective prevention is not available and current curative therapy is expensive, often poorly tolerated and not always effective, alternative therapies including vaccination against leishmaniasis are of priority to overcome the problem. Although Th1 dominant response is so far considered as a pre-requisite for the immune system to overcome the infection, CD8+ T cell response could also be considered as a potent arm of immune system fighting against intracellular Leishmania. Polytope vaccine strategy may open up a new way in vaccine design against leishmaniasis, since they act as a potent tool to stimulate multi-CD8 T cell responses. Clearly there is a substantial need to evaluate the promising epitopes from different proteins of Leishmania parasite species. Some new immunoinformatic tools are now available to speed up this process, and we have shown here that in silico prediction can effectively evaluate HLA class I-restricted epitopes out of Leishmania proteins

    Myelination generates aberrant ultrastructure that is resolved by microglia

    Get PDF
    To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in central nervous system myelin during development. To achieve this, we performed an ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy (SBF-SEM) and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia using exposed phosphatidylserine as one β€œeat me” signal. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that require substantial refinement.</p
    corecore