3,743 research outputs found

    The mechanical relaxation study of polycrystalline MgCNi3

    Full text link
    The mechanical relaxation spectra of a superconducting and a non-superconducting MgCNi3 samples were measured from liquid nitrogen temperature to room temperature at frequency of kilohertz. There are two internal friction peaks (at 300 K labeled as P1 and 125 K as P2) for the superconducting sample. For the non-superconducting one, the position of P1 shifts to 250 K, while P2 is almost completely depressed. It is found that the peak position of P2 shifts towards higher temperature under higher measuring frequency. The calculated activation energy is 0.13eV. We propose an explanation relating P2 to the carbon atom jumping among the off-center positions. And further we expect that the behaviors of carbon atoms maybe correspond to the normal state crossovers around 150 K and 50 K observed by many other experiments.Comment: 4 figure

    Factorization of gravitational Compton scattering amplitude in the linearized version of general relativity

    Full text link
    Gravitational Compton scattering process with a massive fermion is studied in the context of the linearized gravity. Gravitational gauge invariance and graviton transversality cause the transition amplitude to be factorized into that of scalar QED Compton scattering and that of fermion QED Compton scattering with an overall kinematical factor. The factorization is shown explicitly and its physical implications are discussed.Comment: 11 pages, 1 figure(not included), Revtex 3.0, SNUTP 93-2

    Environmental dependence of 8 μm luminosity functions of galaxies at z ~ 0.8: Comparison between RXJ1716.4+6708 and the AKARI NEP-deep field

    Get PDF
    Aims. We aim to reveal environmental dependence of infrared luminosity functions (IR LFs) of galaxies at z ~ 0.8 using the AKARI satellite. AKARI’s wide field of view and unique mid-IR filters help us to construct restframe 8 μm LFs directly without relying on SED models. Methods. We construct restframe 8 μm IR LFs in the cluster region RXJ1716.4+6708 at z = 0.81, and compare them with a blank field using the AKARI north ecliptic pole deep field data at the same redshift. AKARI’s wide field of view (10' × 10') is suitable to investigate wide range of galaxy environments. AKARI’s 15 μm filter is advantageous here since it directly probes restframe 8 μm at z ~ 0.8, without relying on a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. Results. We have found that cluster IR LFs at restframe 8 μm have a factor of 2.4 smaller L^∗ and a steeper faint-end slope than that of the field. Confirming this trend, we also found that faint-end slopes of the cluster LFs becomes flatter and flatter with decreasing local galaxy density. These changes in LFs cannot be explained by a simple infall of field galaxy population into a cluster. Physics that can preferentially suppress IR luminous galaxies in high density regions is required to explain the observed results

    Spin-Orbit Interactions in Bilayer Exciton-Condensate Ferromagnets

    Full text link
    Bilayer electron-hole systems with unequal electron and hole densities are expected to have exciton condensate ground states with spontaneous spin-polarization in both conduction and valence bands. In the absence of spin-orbit and electron-hole exchange interactions there is no coupling between the spin-orientations in the two quantum wells. In this article we show that Rashba spin-orbit interactions lead to unconventional magnetic anisotropies, whose strength we estimate, and to ordered states with unusual quasiparticle spectra.Comment: 36 pages, 12 figure

    On-chip analysis of atmospheric ice-nucleating particles in continuous flow

    Get PDF
    Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 μm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around −36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10 000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe

    Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    Full text link
    Uranium and plutonium's 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (eg. the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization, for which a quantitative measure is lacking. By employing resonant x-ray emission spectroscopy (RXES) and x-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu, and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework for understanding the strongly-correlated behavior of actinide materials.Comment: 30 pages, concatenated article and supporting information, 10 figure

    Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    Get PDF
    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton scattered 662 keV γ\gamma-rays from a 137^{137}Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg\cdotyear of data from NaI detectors is estimated with simulated experiments, using the standard halo model.Comment: 11page

    Factorization and polarization in linearized gravity

    Full text link
    We investigate all the four-body graviton interaction processes: gXγXgX\rightarrow \gamma X, gXgXgX\rightarrow gX, and gggggg\rightarrow gg with XX as an elementary particle of spin less than two in the context of linearized gravity except the spin-3/2 case. We show explicitly that gravitational gauge invariance and Lorentz invariance cause every four-body graviton scattering amplitude to be factorized. We explore the implications of this factorization property by investigating polarization effects through the covariant density matrix formalism in each four-body graviton scattering process.Comment: 45 pages, figures are included (uses pictex), RevTe
    corecore