4,836 research outputs found

    Measuring the accuracy of software vulnerability assessments: experiments with students and professionals

    Get PDF
    Assessing the risks of software vulnerabilities is a key process of software development and security management. This assessment requires to consider multiple factors (technical features, operational environment, involved assets, status of the vulnerability lifecycle, etc.) and may depend from the assessor's knowledge and skills. In this work, we tackle with an important part of this problem by measuring the accuracy of technical vulnerability assessments by assessors with dierent level and type of knowledge. We report an experiment to compare how accurately students with dierent technical education and security professionals are able to assess the severity of software vulnerabilities with the Common Vulnerability Scoring System (v3) industry methodology. Our results could be useful for increasing awareness about the intrinsic subtleties of vulnerability risk assessment and possibly better compliance with regulations. With respect to academic education, professional training and human resources selections our work suggests that measuring the effects of knowledge and expertise on the accuracy of software security assessments is feasible albeit not easy

    Retraction notice: Influence of compressing pressure on macro void formation carbon monolith for methane adsorption

    Get PDF
    RETRACTION NOTICEOn 21rd February 2019, the Editorial Board of the Mongolian Journal of Chemistry decided to retract this article entitled "Influence of compressing pressure on macro void formation of carbon monolith for methane adsorption" because of an authorship dispute. The article was originally published in Vol.18 No.44 2017 pp.24-35. doi: https://doi.org/10.5564/mjc.v18i44.93

    Influence of compressing pressure on macro void formation of carbon monolith for methane adsorption

    Get PDF
    Carbon monoliths for adsorbed natural gas (ANG) storage were prepared from Mongolian anthracite-based activated carbons using carboxy-methyl cellulose as a binder under different compressing pressures. Nitrogen adsorption/desorption experiments were carried out to obtain the specific surface area, pore volume, and pore size distribution of the monoliths.  Methane adsorption experiments on the carbon monoliths were conducted at different temperatures and pressures up to around 3.5 MPa in a high pressure volumetric adsorption apparatus. As expected, adsorption results indicated that the methane adsorption capacity of the carbon monoliths increased with increasing specific surface area and packing density.  The maximum volumetric adsorption of methane was observed as 163 V/V at 293 K and 3.5 MPa on a carbon monolith sample, PMAC1/2-3-65, that does not have the highest specific surface area but relatively high packing density comparing with other monoliths, which implies that two physical properties contribute contradictorily to the methane adsorption capacity.  Based on experimental results, the carbon monoliths prepared from Mongolian anthracite-based activated carbons can be promising media for ANG storage application

    IT Interdependence and the Economic Fairness of Cyber-security Regulations for Civil Aviation

    Get PDF
    Interviews about emerging cybersecurity threats and a cybersecurity public policy economic model for civil aviation illustrate stakeholders' concerns: interdependency issues can lead to aviation regulations that put smaller airports at a disadvantage

    Preparation of “Open/closed” pores of PLGA-microsphere for controlled release of protein drug

    Get PDF
    Poly(D,L-lactic-co-glycolic acid)  has been extensively used as a controlled release carrier for drug delivery due to its good biocompatibility, biodegradability, and mechanical strength. In this study, porous PLGA microspheres were fabricated by an emulsion-solvent evaporation technique using poly ethylene glycol (PEG) as an extractable porogen and loaded with  protein (lysozyme) by suspending them in protein solution. For controlled release of protein, porous microspheres containing lysozyme were treated with water-miscible solvents in aqueous phase for production of pore-closed microspheres. The surface morphology of microspheres were investigated using scanning electron microscopy (SEM) for confirmation of its porous microstructure structure. Protein property after release was observed by enzymatic activity assay. The pore-closing process resulted in nonporous microspheres which exhibited sustained release patterns over an extended period

    Hernia into the umbilical cord with incarceration of liver and gall bladder in a newborn

    Get PDF
    AbstractIncarceration of liver tissue in a hernia of the umbilical cord is a rare occurrence. An incarceration of the gall bladder is even rarer. We report such a case in a newborn that had incarceration of both liver and gall bladder in to the umbilical cord

    AMOD: a morpholino oligonucleotide selection tool

    Get PDF
    AMOD is a web-based program that aids in the functional evaluation of nucleotide sequences through sequence characterization and antisense morpholino oligonucleotide (target site) selection. Submitted sequences are analyzed by translation initiation site prediction algorithms and sequence-to-sequence comparisons; results are used to characterize sequence features required for morpholino design. Within a defined subsequence, base composition and homodimerization values are computed for all putative morpholino oligonucleotides. Using these properties, morpholino candidates are selected and compared with genomic and transcriptome databases with the goal to identify target-specific enriched morpholinos. AMOD has been used at the University of Minnesota to design ∼200 morpholinos for a functional genomics screen in zebrafish. The AMOD web server and a tutorial are freely available to both academic and commercial users at

    Physical Weight Loading Induces Expression of Tryptophan Hydroxylase 2 in the Brain Stem.

    Get PDF
    Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain
    corecore