
Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09797-4

Measuring the accuracy of software vulnerability
assessments: experiments with students
and professionals

Luca Allodi1 ·Marco Cremonini2 · Fabio Massacci3 ·Woohyun Shim4

© The Author(s) 2020

Abstract
Assessing the risks of software vulnerabilities is a key process of software development
and security management. This assessment requires to consider multiple factors (techni-
cal features, operational environment, involved assets, status of the vulnerability lifecycle,
etc.) and may depend from the assessor’s knowledge and skills. In this work, we tackle
with an important part of this problem by measuring the accuracy of technical vulnerability
assessments by assessors with different level and type of knowledge. We report an exper-
iment to compare how accurately students with different technical education and security
professionals are able to assess the severity of software vulnerabilities with the Common
Vulnerability Scoring System (v3) industry methodology. Our results could be useful for
increasing awareness about the intrinsic subtleties of vulnerability risk assessment and pos-
sibly better compliance with regulations. With respect to academic education, professional
training and human resources selections our work suggests that measuring the effects of
knowledge and expertise on the accuracy of software security assessments is feasible albeit
not easy.

Keywords Software vulnerabilities · Risk assessment · Cybersecurity management ·
CVSS · Knowledge units · Professionalization

1 Introduction

During the last decade, secure software management has progressively relied on indus-
trial management processes and guidelines aimed at framing cybersecurity as a production
function (Viega and McGraw 2001). Industrial secure software lifecycle processes, such as
the Microsoft Security Development Lifecycle (Microsoft 2019), Cigital’s Software Secu-
rity Touchpoints (McGraw 2006), and the Software Assurance Forum for Excellence in

Communicated by: Jeffrey C. Carver

� Fabio Massacci
fabio.massacci@unitn.it

Extended author information available on the last page of the article.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/286080338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09797-4&domain=pdf
mailto: fabio.massacci@unitn.it

Empirical Software Engineering

Code (SafeCODE 2018), all define requirements for software security development and
made cybersecurity risk assessment one of the pillars of their approach, being it applied to
code, architecture, or third-party components of a software project.

In this work, we focus on vulnerability assessment as a part of the overall cybersecurity
risk assessment process (ISO 2008) and the use of metrics in the security development
lifecycle (Morrison et al. 2018). Our overall goal is studying to what extent the overall
accuracy of the assessment of software vulnerabilities according to a technical methodology
depend on the assessor’s background knowledge and expertise (MSc students and security
professionals). We further aim at analyzing whether such accuracy, may vary with respect
to different facets of vulnerabilities (e.g. complexity of exploitation vs need for users to
‘click something’ for the exploit to succeed) and different facets of expertise (eg years of
experience vs knowledge of attacks).

A key issue in this respect is the selection of the technical methodology. Some spe-
cific approaches for software vulnerability risk assessment have been developed by large
corporations (Microsoft 2019), specialized companies (Tripwire 2019), and open source
communities (OWASP 2019), but eventually the sector as a whole coalesced into the use of
the Common Vulnerability Scoring System (CVSS1) (Mell et al. 2007) as a simple, clear and
structured methodology that could be fruitfully adopted in cybersecurity risk assessments.
The CVSS alone only permits to score some important general characteristics of a vulnera-
bility by evaluating its severity which only broadly approximates the requirements of a risk
metric. A lively debate is taking place in the cybersecurity community on the definition of a
CVSS-based risk assessment (Doynikova and Kotenko 2017; Spring et al. 2018; Allodi and
Massacci 2014) and we review some of this discussion further in Section 5.

Nevertheless, the CVSS simplicity has made it ubiquitous as a partial solution. For exam-
ple, if you are a merchant accepting credit cards, your software environment should be free
from vulnerabilities with a CVSS base score higher than four (see (PCI-DSS 2018), Testing
Procedure 11.2.2.b). This is an arbitrary threshold, far from optimal from the perspective of
risk assessment, as recent works have shown (Allodi and Massacci 2014; Jacobs et al. 2019),
but easy to define as a standard requirement for a broad industry. Similarly, US Federal
agencies leverage CVSS for their software security assessment.2

Given the importance, ubiquity and practical impact of the CVSS software vulnerability
scoring methodology, it is somewhat surprising that the extent of evaluation errors, and
the overall effect of those errors on the final assessment of a vulnerability are still largely
untested. The goal of this paper is to provide a first answer in this direction.

For publicly known vulnerabilities, CVSS scores are assigned by experts (e.g. at FIRST
Special Interest Group (SIG) (FIRST 2015)), but even within expert groups differences often
arise. Before a vulnerability becomes public, it must still be scored (for example for bounty
programs such as Bugcrowd3) and there is limited empirical evidence on how such scoring is
influenced by the competences of the assessor. Our tests revealed that assessment variability
could be high, a result commonly emerged in many studies on opinion formation in a pool of
experts, which motivated the development of methods for opinion debiasing (Kretz 2018),
calibrating (Camerer and Johnson 1991; Lichtenstein et al. 1982), and pooling (Dietrich and
List 2017).

1https://www.first.org/cvss/specification-document
2https://cyber.dhs.gov/assets/report/bod-19-02.pdf, page 2.
3https://www.bugcrowd.com/product/platform/vrt/

https://www.first.org/cvss/specification-document
https://cyber.dhs.gov/assets/report/bod-19-02.pdf
https://www.bugcrowd.com/product/platform/vrt/

Empirical Software Engineering

Methods As for a long tradition of controlled experiments, we recruited MSc students and
security professionals with the aim of comparing the performances in evaluating vulnera-
bilities according to CVSS (Acar et al. 2017; Arkin et al. 2005; Katsantonis et al. 2017;
Labunets et al. 2017; Workman 2008). Students were divided between those with or without
specific security education, whereas professionals have a median of six years of working
experience in the cybersecurity field (ranging between two and fifteen years) but no specific
security education at academic level.

CVSS has been selected as the methodology for conducting the experiments, because: i)
it is the industrial standard and its usage is not specifically reserved to software vulnerability
experts; ii) its evaluation criteria are simple and the steps to perform are clearly structured;
iii) it is decomposable into ‘atomic tasks’ corresponding to different technical competences.
In this setting, accuracy is determined as the number of correct CVSS scores each participant
produces for each evaluated vulnerability, with respect to the scores assigned by experts of
the FIRST Special Interest Group (SIG).

This work focuses on three specific issues:

1. We first consider the effects that different educational background and practical
experience may have on the accuracy of vulnerability evaluation.

2. Secondly, we consider whether specific vulnerability characteristics (i.e. individual
components of the CVSS scores) are more (or less) accurately scored by different type
of assessors.

3. Finally we consider which facets of professional experiences (e.g. years vs knowledge
of attacks) yield a more accurate assessment.

The rationale is that, to improve software security management processes one may not nec-
essarily need a full fledge security expertise. Rather, a general knowledge of the field might
just be complemented by specific training.

Summary of Contributions The experimental task we considered in this paper (i.e., CVSS
assessments) has already been recognized as part of standard risk assessment processes that
companies and organizations of all types should carry out as normal management practices.
The outcome of our work provides a much-needed measure of the variability of vulnera-
bility assessment scores when assessors profiles vary across their educational background
and working experience. In addition, this study answers the call for objective and evidence-
based analyses of the quality of software security expert assessments, by including cognitive
and professional biases. Finally, by recognizing the greater effectiveness of a mixed train-
ing and education with respect to ‘vertical’ competences (Joint Task Force on Cybersecurity
Education 2017), our work also contributes to the debate concerning the definition of mean-
ingful evaluation methodologies and metrics for advanced education in cybersecurity and
software security professional training (McGettrick 2013; Conklin et al. 2014; Santos
et al. 2017). An initial finding is that being competent in security (either through educa-
tion or experience) improves the overall accuracy of the vulnerability scoring. The result
confirms similar findings in software engineering studies and for more specific security
problems (Edmundson et al. 2013; Acar et al. 2017). In addition, by quantifying this effect,
our study poses the bases for future cost/benefit analyses, for example to evaluate invest-
ments on security training. On the other hand, we find that, under our experimental settings,
experienced security professionals showed no clear advantage over students with a secu-
rity specialization. This lack of clear difference between students and professionals has also
been detected in previous experiments in software engineering studies, which have shown

Empirical Software Engineering

that the performance of experts could become similar to that of novices when problems are
framed in novel situations for which ‘precompiled’ rules are not helpful (Singh 2002). An
expertise reversal effect has also been observed when experts have decided to ignore new
instructional procedures in favor of familiar mental schemes (Kalyuga et al. 2003).

The work is organized as follows: Section 2 presents an overview of related work. In
Section 3, the study design is described, first by presenting our research questions and some
details about the CVSS standard, followed by the description of our sample of participants,
data collection procedure, and analysis methodology. Section 4 analyzes the results obtained
from the experiment, while in Section 5, we discuss possible consequences on software
security development lifecycle and management that our research may suggest. Finally,
some conclusions are presented.

2 RelatedWork

Software development and security practices. Security principles and practices are increas-
ingly incorporated into software development processes with the improvement of industry’s
maturity, the approval of regulations and laws including severe sanctions following dam-
ages caused by inadequate cybersecurity measures, and the diffusion of secure software
development guidelines (Colesky et al. 2016; Islam et al. 2011). In Morrison et al. (2017),
the authors surveyed security practices in open-source projects. Among the others, vulnera-
bility tracking and resolution prioritization are two security practices resulted to be among
the most often reported as daily practices. On the other hand, for tracking and prioritizing
vulnerabilities, as well as for several other surveyed security practices, the authors found
that Ease of use varies negatively with Usage. We could probably conclude that when vul-
nerabilities should be tracked and prioritized, the task looks easier than it actually turns
out to be. This confirms research and analyses (Bozorgi et al. 2010; Allodi and Massacci
2014; 2017) regarding the difficulty of risk-ranking software vulnerabilities due to often
unclear likelihood and consequences when the assessment has to be specific for a certain
organization.

The same survey (Morrison et al. 2017) also provides an anecdotal confirmation of our
hypothesis that up to now there has been a lack of analytical studies and experiments aim-
ing at evaluating how cybersecurity skills are formed. The survey reports the opinion of a
participant, not unusual in cybersecurity professional circles, expressing his/her disdain for
security training because associated to useless classroom lessons and suggesting, instead,
to include other hands-on, informal types of training. In our work, we explicitly consid-
ered this issue and designed a natural experiment for obtaining evidence from students and
professionals. Our results do not support the belief that practical experience always makes
a better cybersecurity expert than formal education. Still Morrison et al. have a second
recent survey (Morrison et al. 2018), this time on security metrics and considering scien-
tific papers, that reveals an unsatisfactory scenario for what concerns the analysis criteria of
software vulnerabilities. In the survey, the authors called Incident metric the one related to
vulnerabilities and found that papers could be divided in two subgroups: those that focused
on quantifying vulnerabilities, a goal more difficult than it may look like (Geer 2015) and a
bad inference method to evaluate risk, and those that discussed CVSS. With respect to our
work, this survey confirms the prevalence of CVSS as the reference methodology for vul-
nerability scoring and therefore our motivations for using it in the experiment, despite its
limitations that we acknowledge and take into account in our analysis.

Empirical Software Engineering

Professionalization Relative to the professionalization of cybersecurity, important issues
are still debated, like the definition of standards needed to establish a curriculum or certifica-
tion (Burley et al. 2014; Conklin et al. 2014), or the best way for governments to encourage
cybersecurity professionalization (Reece and Stahl 2015). These works are connected to
ours because in presenting different initiatives, for example regarding new curricula or
discussing the suitability of licenses and certifications, they also witness the scarcity of
experimental studies about which skills and to what extent they are most useful for solving
relevant security problems.

Experiments with Students Among controlled experiments involving students and profes-
sionals, some have tight relation with our work. In Wermke and Mazurek (2017), a sample
of developers recruited from GitHub was asked to complete simple security programming
tasks. It turns out that the only statistically significant difference was determined by the
years of programming experience, which indicates that familiarity with the task is the main
driver, rather than professional or educational level. This is in line with results in Edmund-
son et al. (2013), whereby security professionals do not outperform students in identifying
security vulnerabilities. The usability of cryptographic libraries has been studied in Acar
et al. (2017). Relevant for our work is the fact that different groups of individuals, with dif-
ferent levels of education or experience, have been recruited. They found that participants’
programming skill, security background, and experience with the given library did not sig-
nificantly predict the code’s overall functionality. Instead, participants with security skills
produced more secure software, although neither as good as expected nor as self-evaluated
by participants. We have found compatible results, although under very different settings
and more nuanced. All these works differ from ours in that they study the performance of
individuals with respect to a specific technical security skill or tool, as opposed to studying
how education, experience, and the combination of subject skills correlate with accuracy in
solving a more general software security problem. One study is closer to ours (Acar et al.
2016), where Android developers’ decision making performances are analyzed with respect
to education and experience. The experiment was based on observing how developers with
different background perform when provided with different types of documentation, and it
found a sensible difference between professionals and students.

3 Study Design

3.1 Analysis Goals and Research Questions

In this study we evaluate the effect of different subject characteristics on technical, user
and system-oriented, and managerial aspects of a vulnerability assessment. Specifically,
our study aims at the following two goals:

Goal 1: The effect of the assessor’s security knowledge on the accuracy of software
vulnerability assessments should be evaluated.We should further determine whether such
accuracy varies for different facets of a software vulnerability (e.g. the complexity of
exploitation or the need for a software user to ‘click on something’ for the vulnerability
to be exploitable).

To address this goal, we distinguish between two broad classes of knowledge: knowledge
acquired through formal security education, meaning academic-level specialized security
courses, and through professional experience. In general, saying that an individual exhibits

Empirical Software Engineering

a technical skill means that s/he has acquired an adequate level of proficiency in mastering
the technical issue as required by the industry. Since the quality of technical knowledge is
extremely variable among industrial sectors, we consider that an individual owns a certain
skill if, being a student, his/her academic curricula had a corresponding Knowledge Unit
(e.g., we consider a student skilled in code security if s/he attended a Secure Programming
course), while, being a professional, we relied on the self-evaluations provided with the
questionnaire we asked to fill before the test. We split Goal 1 in two experimental research
questions (i.e, RQ1.1 and RQ1.2), as reported in Table 1.

Goal 2: Professional experience has different facets (years of experience, specific knowl-
edge of standards, or attacks, etc.) and we want to understand whether they have an effect
on the accuracy of the vulnerability assessment. We also would like to know whether such
accuracy varies for different facets of a vulnerability.

In other words, we would like to understand whether to recognize the severity of a soft-
ware vulnerability one needs to be an expert in everything that is security related, or few
things only make a difference. A case study of the Boeing Company (Burley and Lewis
2019) showed, for example, that the role of Incident Response Specialist first requires a gen-
eral knowledge of system security, and secondly only specific knowledge units related to
Organisational Security (i.e., Business Continuity, Disaster Recovery, and Incident Manage-
ment). Differently, for the role of Network Security Specialist a larger set of knowledge areas
is required: in addition to the general knowledge of system security, knowledge units related
to Connection, Component, Organizational, Data, and Software Security are included. Also
the broad comparison of the available frameworks for the definition of cybersecurity foun-
dational concepts, organizational roles, and knowledge units provided in Hudnall (2019)
shows that not all knowledge units are necessary for each skill. This represents a different
approach with respect to the provision of a ‘standard’ and very broad portfolio of security
competences suggested by some academic curricula (McGettrick 2013) and industries (Von
Solms 2005), which may not fit well with the requirements of modern cybersecurity.

Hence we put forth the idea that the accuracy of a security assessment should be ana-
lyzed with respect to the specific facets of experience of the assessor, with a granularity in
the definition of technical competences similar to that defined by cybersecurity curricular
frameworks like the CSEC or the CAE (Conklin et al. 2018).

Therefore we have the final experimental research question RQ2.1 as presented in
Table 1. The very same question could be asked to formal education and our student sub-
jects. However for privacy reasons we could not collect the information on the grades that

Table 1 Experimental research questions

Question Description

RQ1.1 Do individuals (students) with security knowledge from formal educa-
tion produce software vulnerability evaluations significantly different
from evaluations by individuals (students) without that knowledge?

RQ1.2 Do individuals (professionals) with professional expertise in security
and no formal security education produce software vulnerability evalu-
ations significantly different from evaluations by individuals (students)
with formal security education and no professional expertise?

RQ2.1 Do different facets of expertise (years of professional experience,
knowledge of attacks, etc.) affect the overall accuracy of software
vulnerability assessment?

Empirical Software Engineering

students obtained in the various courses corresponding to different knowledge units (see
Table 3).

3.2 TaskMapping and Vulnerability Selection

The CVSS v3 framework provides a natural mapping of different vulnerability metrics on
aspects of the larger spectrum of security competencies we are considering: technical, user-
oriented, and management-oriented. Using CVSS, the assessor performs an evaluation of the
vulnerability based on available information. Table 2 provides a summary of CVSS’s Base
metrics (columns CVSS and Metric description) with the possible values an assessor could
chose (column Values). They are all the metrics used by CVSS to assess a vulnerability,
with the exception of Scope.4 In addition, we added a short description of the technical
skills related to the specific metric (Skill set) and their mapping with the Knowledge Units
formally defined by the ACM Joint Task Force on Cybersecurity Education (2017).

For our experiment, 30 vulnerabilities have been randomly chosen among the 100 used
by the CVSS Special Interest Group (SIG) to define the CVSS standard. We did not consider
relevant to strictly maintain the same distribution of CVSS scores of the original SIG sample
in our reduced sample, as well as the SIG sample does not reflect the distribution of scores
on the whole NVD,5 because the distribution of scores does not represent different difficulty
levels in evaluating vulnerabilities nor reflect any relevant technical feature that may bias the
result of the test (Scarfone and Mell 2009; Allodi and Massacci 2014). In Appendix A.1, it
is possible to find an example of assessment for three vulnerabilities, with the descriptions,
and the results expressed as error frequency of test participants (see Fig. 4 also in Appendix
A.1).

3.3 Participants and Recruiting Procedure

We follow Meyer (1995) and performed an experiment recruiting three groups of individuals
(total n = 73 participants): 35 major students with no training in security; 19 major students
with three to four years of specific training in security; 19 security professionals with a
median of six years of professional experience. Some participants knew what CVSS is used
for and its scores associated to CVE vulnerabilities,6 but none had experience with CVSS
v3 vulnerability assessment or knew the specific metrics used to produce the score.

With regard to ethical concerns, no personal identifiable information was collected and
participant answers were anonymous. For students, the IRB of the departments involved
confirmed that no formal ethical approval was required, and students were informed that
the participation to the test was voluntary. Participating professionals were informed that
their participation was anonymous with respect to information about their professional
experience and that their CVSS evaluations were in no way linkable to their identity.

Unfortunately, recruiting subjects with very different profiles makes it hard to control for
possible confounding factors; for example, some professionals may have received an educa-
tion equivalent to that of (a group of) student subjects, or some students may have changed

4We have omitted the Scope metric because there is a debate even inside the SIG expert group in charge of
CVSS definition whether or not adjust it in the next standard version, due to the difficulty of correctly iden-
tifying its value even by CVSS’s own designers. CVSS also includes two other set of metrics (Environmental
and Temporal) that we discuss later in Section 5.
5https://nvd.nist.gov/
6https://cve.mitre.org/

https:// nvd.nist.gov/
https://cve.mitre.org/

Empirical Software Engineering

Ta
bl
e
2

Su
m

m
ar

y
of

co
ns

id
er

ed
C
V
S
S

v3
B

as
e

m
et

ri
cs

,m
ap

pi
ng

to
re

le
va

nt
sk

ill
se

ts
,a

nd
JT

F
kn

ow
le

dg
e

ar
ea

s
an

d
kn

ow
le

dg
e

un
its

C
V
S
S

M
et

ri
c

de
sc

ri
pt

io
n

V
al

ue
s

Sk
ill

se
t

M
ap

pi
ng

to
JT

F
K
A

:
{K

U
}

(J
oi

nt
Ta

sk
Fo

rc
e

on
C

yb
er

se
cu

ri
ty

E
du

ca
tio

n
20

17
)

A
V

A
tt
ac
k
V
ec
to
r.

R
ef

le
ct

s
ho

w
re

m
ot

e
th

e
at

ta
ck

er
ca

n
be

to
de

liv
er

th
e

at
ta

ck
ag

ai
ns

t
th

e
vu

ln
er

ab
le

co
m

po
ne

nt
.

T
he

m
or

e
re

m
ot

e,
th

e
hi

gh
er

th
e

sc
or

e.

P
h
y
s
i
c
a
l

,
L
o
c
a
l

,
A
d
j
a
c
e
n
t

N
e
t
.

,N
e
t
w
o
r
k

.
T

he
as

se
ss

or
un

de
rs

ta
nd

s
th

e
te

ch
ni

ca
l

ca
us

es
an

d
ve

ct
or

s
of

at
ta

ck
re

la
te

d
to

a
so

ft
w

ar
e

vu
ln

er
ab

ili
ty

.
T

hi
s

en
co

m
-

pa
ss

es
kn

ow
le

dg
e

of
vu

ln
er

ab
le

co
nf

ig
-

ur
at

io
ns

,
lo

ca
l

an
d

re
m

ot
e

at
ta

ck
de

liv
-

er
y,

an
d

as
pe

ct
s

re
la

te
d

to
at

ta
ck

en
gi

-
ne

er
in

g.

So
ft
w
ar
e
Se

cu
ri
ty

:{F
un

da
m

en
ta

lP
ri

n-
ci

pl
es

,
Te

st
in

g,
Im

pl
em

en
ta

tio
n};

C
on

-
ne
ct
io
n
Se

cu
ri
ty

:
{D

is
tr

ib
ut

ed
Sy

st
em

s
A

rc
hi

te
ct

ur
e,

N
et

w
or

k
Se

rv
ic

es
,

N
et

-
w

or
k

D
ef

en
se

};
D
at
a
Se

cu
ri
ty

:
{D

at
a

In
te

gr
ity

an
d

A
ut

he
nt

ic
at

io
n,

Se
cu

re
C

om
m

.P
ro

to
co

ls
}

A
C

A
tt
ac
k
C
om

pl
ex
it
y.

R
ef

le
ct

s
th

e
ex

is
-

te
nc

e
of

co
nd

iti
on

s
th

at
ar

e
be

yo
nd

th
e

at
ta

ck
er

’s
co

nt
ro

l
fo

r
th

e
at

ta
ck

to
be

su
cc

es
sf

ul
.

H
i
g
h
,

L
o
w
.

P
R

P
ri
vi
le
ge
s
R
eq
ui
re
d.

R
ef

le
ct

s
th

e
pr

iv
-

ile
ge

s
th

e
at

ta
ck

er
ne

ed
ha

ve
on

th
e

vu
l-

ne
ra

bl
e

sy
st

em
to

ex
pl

oi
tt

he
vu

ln
er

ab
le

co
m

po
ne

nt
.

H
i
g
h
,

L
o
w
,

N
o
n
e
.

T
he

as
se

ss
or

un
de

rs
ta

nd
s

th
e

in
te

ra
ct

io
n

be
tw

ee
n

vu
ln

er
ab

le
sy

st
em

,
us

er
,

an
d

at
ta

ck
.

E
.g

.,
at

ta
ck

s
lik

e
sp

ea
r-

ph
is

hi
ng

or
us

er
s

ig
no

ri
ng

al
er

ts
.

So
ft
w
ar
e
Se

cu
ri
ty

:{F
un

da
m

en
ta

lP
ri

n-
ci

pl
es

,
Im

pl
em

en
ta

tio
n,

D
es

ig
n,

D
oc

-
um

en
ta

tio
n};

D
at
a

Se
cu

ri
ty

:
{D

at
a

In
te

gr
ity

an
d

A
ut

he
nt

ic
at

io
n}

U
I

U
se
r
In
te
ra
ct
io
n.

R
ef

le
ct

s
th

e
ne

ed
fo

r
us

er
in

te
ra

ct
io

n
to

de
liv

er
a

su
cc

es
sf

ul
at

ta
ck

.

R
e
q
u
i
r
e
d
,

N
o
n
e
.

C
C
on

fi
de
nt
ia
lit
y.

M
ea

su
re

s
th

e
im

pa
ct

to
th

e
co

nf
id

en
tia

lit
y

of
in

fo
rm

at
io

n
on

th
e

im
pa

ct
ed

sy
st

em
.

N
o
n
e
,

L
o
w
,

H
i
g
h
.

T
he

as
se

ss
or

s
ca

n
ev

al
ua

te
th

e
re

pe
r-

cu
ss

io
ns

of
a

se
cu

ri
ty

pr
ob

le
m

ov
er

bu
si

ne
ss

-l
ev

el
as

pe
ct

s
su

ch
as

da
ta

ex
fi

l-
tr

at
io

n
an

d
sy

st
em

pe
rf

or
m

an
ce

.

So
ft
w
ar
e
Se

cu
ri
ty

:
{D

ep
lo

ym
en

t
an

d
M

ai
nt

en
an

ce
,

D
oc

um
en

ta
tio

n,
Im

pl
e-

m
en

ta
tio

n,
Fu

nd
am

en
ta

l
Pr

in
ci

pl
es

};
D
at
a

Se
cu

ri
ty

:
{D

at
a

In
te

gr
ity

an
d

A
ut

he
nt

ic
at

io
n,

Se
cu

re
C

om
m

un
ic

at
io

n
Pr

ot
oc

ol
s}

I
In
te
gr
it
y.

M
ea

su
re

s
th

e
im

pa
ct

to
th

e
in

te
gr

ity
of

in
fo

rm
at

io
n

st
or

ed
on

th
e

im
pa

ct
ed

sy
st

em
.

N
o
n
e
,

L
o
w
,

H
i
g
h
.

A
A
va
ila

bi
lit
y.

M
ea

su
re

s
th

e
im

pa
ct

to
th

e
av

ai
la

bi
lit

y
of

th
e

im
pa

ct
ed

co
m

po
ne

nt
.

N
o
n
e
,

L
o
w
,

H
i
g
h
.

Empirical Software Engineering

masters during their student career. As these effects are impossible to reliably measure, we
explicitly account for the (unmeasured) in- subject variability in the analysis methodology
and report the corresponding estimates.

3.3.1 Students

Students participating in our study are MSc students of two Italian universities, both requir-
ing proficiency in English and a background in computer science. The first group, SEC, is
enrolled in the Information Security MSc of the University of Milan and already completed a
BSc in Information Security. The second group, CS group, is composed of students enrolled
in a Computer Science MSc at the University of Trento. SEC subjects were recruited dur-
ing the Risk Analysis and Management course at the first year of their MSc; CS students
were recruited during the initial classes of the course Security and Risk Management, the
first security-specific course available in their MSc curriculum. Table 3 provides the infor-
mation about specific skills acquired by the two groups of students in their BSc programs.
Here skills are reported as core Knowledge Units defined according to the categories of the
U.S. Center for Academic Excellence (CAE). 78 In particular, we see from Table 3 that the
two groups of students, CS and SEC, share at least ten core Knowledge Units, representing
fundamental computer science competences (e.g., networking, operating systems, program-
ming, etc.). With respect to security Knowledge Units, while CS students do not have any,
the SEC students have attended at least five classes dedicated to security fundamentals (e.g.,
secure design, cryptography, secure networks, etc.). Specific student information, such as
the exam grades, possibly useful to infer the degree of knowledge for each topic, cannot
obviously be accessed as the trial was anonymous.9

3.3.2 Professionals

Subjects in the PRO group are members of a professional security community lead by repre-
sentatives of the Italian headquarters of a major US corporation in the IT sector. Participants
in our study have been recruited through advertisement in the Community’s programme
of a training course on CVSS v3. Participants in the PRO group have different seniority
in security and all professional profiles focus on security-oriented problems, technologies,
and regulations. To characterize PRO experiences, we asked them to complete a question-
naire detailing job classification and years of experience, education level, experience in
vulnerability assessment, and expertise level in system security/hardening, network security,
cryptography, and attack techniques. Of the 19 components of the PRO group, 13 accepted
to fill the questionnaire. No motivation was provided by those that preferred not to disclose
any personal information. The median subject in the PRO group has six years of expertise
in the security field, and roles comprise Security Analysts, Computer Emergency Response
Team members, penetration testers and IT auditors. A detailed characterization of PRO
subjects over the other dimensions is given in Section 4.2.

7https://www.cyberwatchwest.org/index.php/cae-cd-program,
8The CAE curriculum is largely equivalent to the JTF on cybersecurity recommendations, with the addition of
‘classic’ computer-science competences otherwise not included in the JTF (Joint Task Force on Cybersecurity
Education 2017). See Hallett et al. (2018) for a discussion.
9We also did not collect data about gender because the number of females, both between students and
professional, was limited to a few, therefore any inference based on gender would have been devoid of
any significance. The CS and Security courses have a female participation below 10%. The professional
community was no better. Lack of women participation is a concern across countries (Shumba et al. 2013).

https://www.cyberwatchwest.org/index.php/cae-cd-program

Empirical Software Engineering

Ta
bl
e
3

C
or

e
kn

ow
le

dg
e

un
its

fo
r
C
S

an
d
S
E
C

st
ud

en
ts

B
as

ic
D

at
a

A
na

ly
si

s

B
as

ic
Sc

ri
pt

-
in

g

IT
Sy

s.
C

om
po

-
ne

nt
s

N
et

w
or

k
C

on
-

ce
pt

s

Sy
s.

A
dm

in
-

is
tr

at
io

n

D
at

aB
.

M
ng

m
t.

Sy
s.

N
et

.
Te

ch
n.

an
d

Pr
ot

.

O
p.

Sy
st

.
C

on
-

ce
pt

s

Pr
ob

.
an

d
St

at
s.

Pr
og

ra
m

m
in

g
Fu

nd
.

of
Se

c.
D

es
ig

n

Fu
nd

.
of

C
ry

pt
o.

C
yb

er
D

ef
en

se
C

yb
er

T
hr

ea
ts

N
et

w
or

k
D

ef
en

se
Po

lic
y

E
th

ic
s

C
om

pl
.

Fu
nd

.
of

In
f.

A
ss

ur
.

C
S

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
S
E
C

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

Empirical Software Engineering

Table 4 Example of assessment by randomly selected participants for each CS, SEC, PRO groups compared
to SIG’s assessment for CVE 2010-3974

Partic. CVSS assessment Particip.

Group AV AC PR UI C I A Confidence

CS Network High Low None Low Low Low Yes

SEC Local Low Low Required High High High Blank

PRO Local Low None None High High High Yes

SIG Local Low None Required High High High -

Excerpt of the CVE 2010-3974: fxscover.exe in the Fax Cover Page Editor in Microsoft Windows XP SP2
and SP3, Windows Server 2003 SP2, Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, R2,
and R2 SP1, and Windows 7 Gold and SP1 does not properly parse FAX cover pages, which allows remote
attackers to execute arbitrary code via a crafted .cov file, aka “Fax Cover Page Editor Memory Corruption
Vulnerability”.

3.4 Data Collection

Ahead of the experiment, participants attended an introductory seminar to CVSS v3 held by
one of the authors. Content and delivery of the seminar were identical for the three groups.
The experiment replicates the procedure performed by security experts represented in the
CVSS Special Interest Group (SIG), which perform assessments over a set of vulnerabili-
ties in their organization by relying on vulnerability descriptions and the CVSS v3 official
documentation. These assessments are usually performed in two to five minutes each, due
to the limited information available to the assessors (Holm and Afridi 2015). Similarly, we
asked each participant to complete 30 vulnerability assessments in 90 minutes by only rely-
ing on CVE descriptions, a summary description of CVSS v3 metrics, and a scoring rubric
reporting standard value definitions for CVSS.10. All participants completed the assessment
in the assigned time, except for seven students of the CS group.

To evaluate the quality of the assessments, we assumed an evaluation of a metric as
wrong if it was different from the corresponding evaluation, produced by the SIG for the
same vulnerability. Then, for each participant and each vulnerability assessed, we counted
the number of correct answers and, for the wrong ones, we also kept track of the severity of
errors, which we used for a qualitative evaluation of errors made by the participants.

Table 4 reports an example of vulnerability assessment. The answers from one par-
ticipant, randomly chosen, for each group, are shown together with reference evaluations
produced by SIG (bottom row). In this particular case, the CS student had all answers wrong
and, despite this, declared to be confident in his/her evaluation. Both the SEC student and the
PRO professional, instead, made one mistake, but exhibited different degree of confidence
in their evaluation.

3.5 Analysis Methodology

We formalize a CVSS assessment by assuming that there exists a function ai(vj) repre-
senting the assessment produced by assessor i ∈ {CS ∪ SEC ∪ PRO} of vulnerability v

10The experiment material, including the metric descriptions, scoring rubric, and the test sheet, is available
for consultation at https://github.com/cvssexp/cvssmaterial

https://github.com/cvssexp/cvssmaterial

Empirical Software Engineering

represented as the vector of CVSS metrics to be evaluated (j ∈ {AV, AC, UI, PR, C, I, A}).
We further define a function e(ai(vj)) that detects the error on metric j by assessor i on
vulnerability v by comparing the subject’s assessment ai∈{CS,SEC,PRO}(vj) with the assess-
ment provided by the SIG as∈SIG(vj) on the same vulnerability. We observe subjects in our
study multiple times (once per vulnerability). As each observation is not independent and
subjects may learn or understand each vulnerability differently, a formal analysis of our data
requires to account for the variance in the observation caused by subject (e.g. rate of learn-
ing or pre-existent knowledge) and vulnerability characteristics (e.g. clarity of description).
To evaluate the effect rigorously, we adopt a set of mixed-effect regression models that
account for two sources of variation: the vulnerability and the subject (Agresti and Kateri
2011). The general form of the models is:

g(y
j
iv) = xivβ + ziui + hvkv + εiv, (1)

where g(·) is the link function, and y
j
iv denotes the observation on CVSS metric j performed

by subject i on vulnerability v. xivj is the vector of fixed effects with coefficient β. The
vectors ui and kv capture the shared variability at the subject and vulnerability levels
that induces the association between responses (i.e. assessment error on CVSS metric j)
within each observation level (i.e. subject i and vulnerability v). εiv is the leftover error.
We report regression results alongside a pseudo-R2 estimation of the explanatory power of
the model for the fixed-effect part, as well as for the full model as specified in Nakagawa
and Schielzeth (2013). We report odds ratio (exponentiated regression coefficients) and
confidence intervals (via robust profile-likelihood estimations (Murphy and Van der Vaart
2000)) for a more immediate model interpretation. Odds lower than one (with 0 ≤ C.I . < 1)
indicate a significant decrease in error rates. These are indicated in Tables 5 and 6 with a
∗ next to the estimate. Borderline results are those whose C.I. only marginally crosses the
unity up to 5% (i.e. 0 ≤ C.I . ≤ 1.05).

4 Empirical Results

Our data collection comprises 2190 assessments performed by 73 subjects over 30 vulnera-
bilities. We consider an assessment as valid if the assessment is a) complete (i.e., the whole
CVSS vector is compiled), and b) meaningful (i.e. the assessment is made by assigning a
valid value to each CVSS metrics). This leaves us with 1924 observations across 71 subjects.
The 244 observations excluded from the dataset are due to incomplete or invalid records not
matching CVSS specifications, and cannot therefore be interpreted for the analysis.

4.1 Effect of Security Knowledge

4.1.1 Assessment Confidence

We start our analysis by evaluating the level of scoring confidence for the three groups for
each vulnerability. Table 7 shows the results for the subjects’ reported confidence in the
assessments (See Table 4 for an example).

Overall, subjects declared to have been confident in their assessment in 39% (757) of
the cases, and non-confident in 48% (922). The remaining 13% subjects left the field blank.
Looking at the different groups, a significant majority of scorings in the CS group (64%) was
rated as low confidence, while for SEC and PRO groups approximately 50% were confident

Empirical Software Engineering

Ta
bl
e
5

E
ff

ec
to

f
se

cu
ri

ty
ed

uc
at

io
n

on
od

ds
of

er
ro

r

er
ro

r
A
V

A
C

U
I

P
R

C
I

A

c
0.

34
1.

11
3.

26
3.

16
∗

1.
01

1.
48

0.
61

[0.
11

;1
.0

1]
[0.

57
;2

.1
4]

[0.
91

;1
1.

75
]

[1.
06

;9
.5

2]
[0.

38
;2

.6
8]

[0.
60

;3
.6

6]
[0.

22
;1

.7
2]

S
E
C

0.
70

0.
58

∗
1.

05
0.

75
0.

41
∗

0.
46

∗
0.

36
∗

[0.
47

;1
.0

4]
[0.

38
;0

.8
7]

[0.
72

;1
.5

3]
[0.

55
;1

.0
4]

[0.
26

;0
.6

4]
[0.

32
;0

.6
7]

[0.
25

;0
.5

2]
P
R
O

0.
58

∗
0.

59
∗

0.
36

∗
0.

72
∗

0.
39

∗
0.

47
∗

0.
34

∗
[0.

39
;0

.8
7]

[0.
39

;0
.8

9]
[0.

25
;0

.5
3]

[0.
52

;0
.9

9]
[0.

25
;0

.6
1]

[0.
32

;0
.6

8]
[0.

23
;0

.4
9]

C
o
n
f
.

0.
86

1.
00

0.
84

1.
01

0.
71

∗
0.

64
∗

0.
79

[0.
65

;1
.1

1]
[0.

78
;1

.2
7]

[0.
64

;1
.1

0]
[0.

79
;1

.2
8]

[0.
55

;0
.9

2]
[0.

50
;0

.8
2]

[0.
61

;1
.0

1]
V

ul
ne

ra
bi

lit
y

va
ri

ab
le

s
C
r
y
p
t
o
g
r
a
p
h
i
c

I
s
s
u
e
s

0.
43

1.
48

0.
36

0.
17

1.
38

1.
20

3.
74

[0.
06

;2
.9

0]
[0.

51
;4

.3
2]

[0.
04

;3
.1

9]
[0.

03
;1

.0
9]

[0.
27

;7
.0

8]
[0.

27
;5

.4
3]

[0.
64

;2
1.

83
]

I
n
f
o
r
m
a
t
i
o
n

2.
15

1.
20

0.
19

0.
46

2.
82

1.
53

4.
58

[0.
42

;1
1.

21
]

[0.
47

;3
.0

9]
[0.

03
;1

.2
9]

[0.
09

;2
.4

7]
[0.

66
;1

2.
00

]
[0.

40
;5

.7
8]

[0.
97

;2
1.

87
]

I
n
p
u
t

2.
69

0.
67

0.
23

∗
0.

50
1.

59
0.

88
2.

91
[0.

79
;9

.2
4]

[0.
33

;1
.3

5]
[0.

05
;0

.9
4]

[0.
15

;1
.7

2]
[0.

54
;4

.6
6]

[0.
32

;2
.3

6]
[0.

92
;9

.3
8]

R
e
s
o
u
r
c
e

A
c
c
e
s
s

0.
76

0.
88

0.
18

0.
19

∗
2.

22
1.

21
4.

87
∗

[0.
16

;3
.5

5]
[0.

37
;2

.1
1]

[0.
03

;1
.0

4]
[0.

04
;0

.8
7]

[0.
58

;8
.5

4]
[0.

35
;4

.0
6]

[1.
15

;2
0.

76
]

O
t
h
e
r

2.
21

0.
48

0.
08

∗
0.

51
1.

68
1.

12
4.

35
[0.

42
;1

1.
82

]
[0.

19
;1

.2
0]

[0.
01

;0
.5

3]
[0.

10
;2

.6
5]

[0.
39

;7
.1

3]
[0.

29
;4

.2
5]

[0.
92

;2
0.

97
]

V
a
r
(c

|ID
)

0.
25

0.
33

0.
19

0.
93

0.
38

0.
22

0.
20

V
a
r
(c

|C
V

E
)

1.
04

0.
30

1.
42

0.
64

0.
79

0.
66

0.
92

P
s
e
u
d
o
R

2
(f

ix
ed

ef
f.

)
0.

09
0.

04
0.

12
0.

13
0.

07
0.

06
0.

11
P

s
e
u
d
o
R

2
(f

ul
lm

od
.)

0.
34

0.
19

0.
41

0.
41

0.
31

0.
26

0.
34

N
19

24
19

24
19

24
19

24
19

24
19

24
19

24

R
eg

re
ss

io
n

on
od

ds
of

er
ro

r
ac

co
un

tin
g

fo
r

pr
es

en
ce

or
ab

se
nc

e
of

se
cu

ri
ty

kn
ow

le
dg

e
an

d
pr

of
es

si
on

al
se

cu
ri

ty
ex

pe
rt

is
e.

O
dd

s
lo

w
er

th
an

on
e

(w
ith

0
≤

C
.I

.
<

1)
in

di
ca

te
a

si
gn

if
ic

an
t
de
cr
ea
se

in
er

ro
r

ra
te

s
(i

nd
ic

at
ed

w
ith

a
∗n

ex
t

to
th

e
es

tim
at

e)
;
B
or
de
rl
in
e

re
su

lts
ar

e
th

os
e

w
ho

se
C

.I
.o

nl
y

m
ar

gi
na

lly
cr

os
se

s
th

e
un

ity
up

to
5%

(i
.e

.
0

≤
C

.I
.≤

1.
05

).
S
E
C
+
P
R
O

ar
e

si
gn

if
ic

an
tly

m
or

e
ac

cu
ra

te
th

an
C
S

in
th

e
as

se
ss

m
en

t.
S
E
C

do
es

no
tp

er
fo

rm
si

gn
if

ic
an

tly
be

tte
r

th
an

C
S

in
th

e
U
I

m
et

ri
c,

w
he

re
as

P
R
O

do
es

.
M

ar
gi

na
lr

es
ul

ts
ar

e
ob

ta
in

ed
fo

r
A
V

an
d
P
R

Empirical Software Engineering

Ta
bl
e
6

E
ff

ec
to

f
su

bj
ec

tc
ha

ra
ct

er
is

tic
s

on
od

ds
of

er
ro

r
in

th
e
P
R
O

gr
ou

p

er
ro

r
A
V

A
C

U
I

P
R

C
I

A

c
0.

79
2.

70
3.

42
59

.8
0∗

2.
22

3.
81

0.
37

[0.
14

;4
.3

6]
[0.

56
;1

3.
54

]
[0.

83
;1

4.
79

]
[1.

83
;3

02
7.

71
]

[0.
35

;1
4.

13
]

[0.
43

;3
4.

31
]

[0.
04

;2
.8

7]
Y
e
a
r
s

0.
96

0.
95

0.
86

∗
0.

80
∗

0.
86

0.
86

0.
90

[0.
84

;1
.0

9]
[0.

81
;1

.1
1]

[0.
76

;0
.9

7]
[0.

64
;0

.9
9]

[0.
71

;1
.0

5]
[0.

68
;1

.1
0]

[0.
74

;1
.1

1]
A
t
t
a
c
k
s

0.
49

∗
0.

42
∗

1.
32

0.
66

0.
45

0.
41

0.
61

[0.
26

;0
.8

9]
[0.

19
;0

.8
5]

[0.
77

;2
.2

5]
[0.

24
;1

.7
7]

[0.
18

;1
.1

0]
[0.

13
;1

.2
3]

[0.
23

;1
.5

3]
S
y
s
t
e
m
S
e
c

1.
14

0.
74

0.
77

0.
74

0.
48

0.
43

0.
42

[0.
62

;2
.1

4]
[0.

35
;1

.5
4]

[0.
44

;1
.3

3]
[0.

27
;2

.0
3]

[0.
19

;1
.2

0]
[0.

13
;1

.3
5]

[0.
15

;1
.0

7]
V

ul
ne

ra
bi

lit
y

va
ri

ab
le

s
C
r
y
p
.

I
s
s
u
e
s

0.
24

4.
67

0.
24

0.
01

1.
20

1.
21

6.
29

[0.
01

;3
.5

3]
[0.

65
;4

2.
22

]
[0.

03
;1

.7
9]

[0.
00

;1
.8

1]
[0.

16
;9

.4
3]

[0.
15

;1
0.

07
]

[0.
59

;7
6.

88
]

I
n
f
o
r
m
a
t
i
o
n

2.
13

1.
03

0.
14

∗
0.

02
1.

77
3.

05
13

.1
3∗

[0.
23

;2
0.

43
]

[0.
19

;5
.6

3]
[0.

02
;0

.8
3]

[0.
00

;2
.3

3]
[0.

30
;1

0.
92

]
[0.

49
;2

1.
10

]
[1.

64
;1

24
.5

3]
I
n
p
u
t

0.
81

0.
21

∗
0.

17
∗

0.
20

1.
08

0.
59

4.
07

[0.
15

;4
.3

2]
[0.

05
;0

.7
2]

[0.
04

;0
.6

2]
[0.

00
;8

.2
4]

[0.
28

;4
.2

6]
[0.

15
;2

.4
0]

[0.
82

;2
3.

81
]

R
e
s
o
u
r
c
e

A
c
c
e
s
s

0.
42

0.
62

0.
26

0.
02

2.
25

1.
01

15
.3

7∗
[0.

05
;3

.5
1]

[0.
13

;3
.0

0]
[0.

05
;1

.3
4]

[0.
00

;1
.9

1]
[0.

42
;1

2.
57

]
[0.

18
;5

.7
6]

[2.
20

;1
31

.9
1]

O
t
h
e
r

1.
19

0.
12

∗
0.

12
∗

0.
23

1.
14

0.
62

6.
13

[0.
11

;1
2.

64
]

[0.
02

;0
.7

4]
[0.

02
;0

.7
3]

[0.
00

;3
7.

62
]

[0.
19

;7
.1

0]
[0.

09
;4

.0
4]

[0.
73

;5
7.

79
]

V
a
r
(c

|ID
)

0.
02

0.
14

0.
00

0.
51

0.
32

0.
60

0.
34

V
a
r
(c

|C
V

E
)

1.
59

0.
74

0.
83

1.
58

0.
83

0.
90

1.
19

P
s
e
u
d
o
R

2
(f

ix
ed

ef
f.

)
0.

07
0.

22
0.

12
0.

14
0.

10
0.

14
0.

16
P

s
e
u
d
o
R

2
(f

ul
lm

od
el

)
0.

38
0.

39
0.

30
0.

47
0.

33
0.

41
0.

43
N

35
7

35
7

35
7

35
7

35
7

35
7

35
7

R
eg

re
ss

io
n

on
od

ds
of

er
ro

rb
y

su
bj

ec
tc

ha
ra

ct
er

is
tic

s
an

d
vu

ln
er

ab
ili

ty
ca

te
go

ry
.O

dd
s

lo
w

er
th

an
on

e
(w

ith
0

≤
C

.I
.<

1)
in

di
ca

te
a

si
gn

if
ic

an
td
ec
re
as
e

in
er

ro
rr

at
es

(i
nd

ic
at

ed
w

ith
a

∗n
ex

tt
o

th
e

es
tim

at
e)

;B
or
de
rl
in
e

re
su

lts
ar

e
th

os
e

w
ho

se
C

.I
.o

nl
y

m
ar

gi
na

lly
cr

os
se

s
th

e
un

ity
up

to
5%

(i
.e

.0
≤

C
.I

.≤
1.

05
).

E
du

ca
tio

n,
C

V
SS

E
xp

,N
et

Se
c,

C
ry

pt
o

ha
ve

be
en

dr
op

pe
d

be
ca

us
e

hi
gh

ly
co

rr
el

at
ed

w
ith

ot
he

r
fa

ct
or

s
in

th
e

re
gr

es
si

on
;t

hi
s

is
to

av
oi

d
m

ul
tic

ol
lin

ea
ri

ty
pr

ob
le

m
s.

O
ve

ra
ll

w
e

fi
nd

th
at

di
ff

er
en

tv
ul

ne
ra

bi
lit

y
as

pe
ct

s
ar

e
co

ve
re

d
by

di
ff

er
en

ts
ub

je
ct

ch
ar

ac
te

ri
st

ic
s

Empirical Software Engineering

Table 7 Confidence assessments for the groups

Confident

Group Yes No Blank tot.

CS 228 552 82 862

SEC 275 203 57 535

PRO 254 167 106 527

tot. 757 922 245 1924

assessments. Even by considering ‘Blank’ confidence as low confidence, the figures for the
SEC and PRO groups are statistically indistinguishable (p = 1 for a Fisher exact test11),
whereas the difference is significant between CS and SEC+PRO confidence levels (p =
0.017).

4.1.2 Severity Estimations

Whereas technical details may significantly vary between vulnerabilities, for simplic-
ity we grouped the vulnerability assessed into six macro-categories whose definitions
have been derived from the Common Weakness Enumeration (CWE) as provided by the
NIST/MITRE:12

– input: vulnerabilities caused by flawed or missing validation (e.g. code injection);
– information: vulnerabilities regarding system or process specific (e.g. info disclo-

sure);
– resource access: vulnerabilities granting the attacker access to otherwise unau-

thorized resources (e.g. path traversal);
– crypto: vulnerabilities affecting cryptographic protocols or systems;
– other: vulnerabilities that do not belong to specific CWE classes (taken as is from

NVD);
– insufficient information: vulnerabilities for which there is not enough

information to provide a classification (taken as is from NVD).

The mapping has been directly derived from the MITRE CWE classification, and has been
performed by one author of this study and independently verified by other two. Table 8 in the
Appendix A.2 details the mapping between CWEs in our dataset and the defined categories.

Figure 1 reports how severity estimations of vulnerabilities vary, w.r.t. the reference score
computed by the SIG, between the three groups of participants and for each vulnerabil-
ity category. A positive difference indicates an overestimation (i.e. participants attributed
a higher severity score); a negative value indicates an underestimation. We observe that
Cryptographic Issues and Insufficient information categories were per-
ceived as more severe by all participant groups than by the SIG, whereas for other categories
the results are mixed. Following CVSS v3 specifications (FIRST 2015) (Section 8.5), an
over- or under-estimation of two points may result in an important mis-categorization of the
vulnerability, whereas an error of ±0.5 points is within accepted tolerance levels. Overall,

11To avoid issues with dependent observations, we classify a subject based on the highest number of “Yes”,
“No”, “Blank” answers to match him or her to a confidence level.
12http://cwe.mitre.org

http://cwe.mitre.org

Empirical Software Engineering

Fig. 1 Distribution of difference in severity estimation by vulnerability type and subject group

we find that experiment subjects’ estimations of vulnerability severity are only marginally
off with respect to the SIG estimations.

4.1.3 Assessment Errors

In Fig. 2 we have a more detailed inspection of scoring errors for the three groups by con-
sidering the specific CVSS metrics rather than the total score as computed by the CVSS for
a vulnerability. We first evaluate the sign and the size of errors. With regard to the sign of
an error, for instance, the PR metric could have three values (High, Low, None; see
Table 2). Assuming that the SIG attributed the value Low for a certain vulnerability, if a
participant selects High the error is an overestimation (positive error, +1), if he or she
selects None it is an underestimation (negative error, -1). Errors may also have different
sizes, which depend on the specific metric and the specific SIG evaluation. In the previous
example, the size of the error is at most 1. However, for a different vulnerability the SIG
could have evaluated as High for the PR metric. In that case, if a participant selects Low it
results in a negative error of size 1 (i.e., -1), if s/he selects None the error size is 2 (i.e., -2),
with different consequences on the overall scoring error for the vulnerability.

Fig. 2 Distribution of assessment errors over the CVSS metrics

Empirical Software Engineering

Given this computation of errors’ sign and size, we observe that the frequency of large
errors (defined as errors with size greater then 1), is small. This indicates that, in general,
subjects did not ‘reverse’ the evaluation by completely missing the correct answer (e.g.
assessing a High Confidentiality impact as a None), a situation that might have lead to a
severely mistaken vulnerability assessment. Whereas a detailed analysis of error margins is
outside the scope of this study we observe that, overall, most subjects in all groups showed
a good grasp of the task at hand.

The large errors we observe on certain metrics (between 30% and 60% of tests, depend-
ing on the group of respondents and the metric, as discussed in the following) are mostly
produced by errors of size 1. Error rates of this size are to be expected in similar experi-
mental circumstances (Onarlioglu et al. 2012, finds error in the 30-40% rate over a binomial
outcome), particularly considering that participants in our experiment have been explic-
itly selected with no previous experience in CVSS assessment, the limited amount of time,
and the CVE description as the only technical documentation, this rate of small errors is
unsurprising.

Overall, we observe that there is a clear difference in accuracy between the security
unskilled CS and security skilled SEC+PRO for all metrics. This is particularly evident in
the AV, AC and PR metrics, and all CIA impact metrics. This effect is also present in the
UI metric, but here the CS and SEC students perform similarly, whereas professionals in
the PRO group achieve higher accuracy. As UI depends specifically on a user’s interaction
with the vulnerable component, the greater operative and domain-specific experience of the
PRO group may explain this difference (e.g. for the appearance of warning dialogs on a
certificate error). We observe an overall tendency in over-estimating PR and UI, and under-
estimating AC, which may indicate that relevant information for the assessment of these
metrics are missing, a sensible problem already noted in the industrial sector as well (see for
example the recent ‘call for action’ from NIST (2018)). Conversely, the difference between
SEC students and PRO professionals seems less pronounced, if present at all. The tendency
of the error does not appear to meaningfully differ between groups, indicating no specific
bias toward over or underestimation.

As each metric has a different set of possible values, to simplify the interpretation
of results, we here consider the binary response of presence or absence of error in the
assessment. We define a set of regression equations for each CVSS metric j of the form:

g(e
j
vi) = c + β1CONFvi + β2GROUP i

+ β3V ULNT YPEv + .. (2)

where g(·) is the logit link function, e
j
vi is the binary response on presence or

absence of error on metric j for subject i and vulnerability v, and β2GROUP i and
β3V ULNT YPEv represent respectively the vector of subject groups (CS, SEC, PRO), and
vulnerability categories.13

Table 5 reports the regression results. We conservatively consider assessments with a
‘Blank’ level of confidence (ref. Table 7) as non-confident. Effects for the group variables
SEC and PRO are with respect to the baseline category CS. We report the estimated change
in odds of error and confidence intervals of the estimation.

13We did consider interaction effects between explanatory variables in the preliminary phases of this analysis,
and found qualitatively equivalent results. To avoid complicating the notation and the result interpretation,
we do not report those here.

Empirical Software Engineering

In general, from our results it emerges that subjects with security knowledge, i.e.
SEC+PRO, produce significantly more accurate assessments than subjects with no security
knowledge, i.e. CS, on all metrics. Overall, SEC+PRO is between 30% to 60% less likely
than CS in making an error.

RQ1.1. Focusing only on the students’ performance (SEC vs CS), we found that overall
the SEC group performs significantly better than the CS group across most metrics.
For the metrics AV, PR we obtained borderline results, whereby for UI no statistical
difference between the groups was observed.

It is interesting to note that the SEC group tends to perform better than CS over metrics
requiring technical and formal knowledge of system properties, for example to correctly
evaluate the complexity of a vulnerability exploit. Whereas both groups are acquainted to
concepts such as Confidentiality, Integrity, and Availability, the formal application of these
concepts to the security domain provides a clear advantage in terms of accuracy for the SEC
group when compared to CS students. Security knowledge appears to have a less decisive
effect on network (AV) and access (PR) aspects; whereas training on networks is common
to both groups (ref. Table 3), the application of security aspects appears to be beneficial,
albeit only marginally. Perhaps more surprisingly, one would expect assessments on the
PR metric to benefit from knowledge on access control and policies (foundational aspects
of security designs taught to SEC, ref. Table 3). Yet, this difference appears to be only
marginal, suggesting that other factors, such as experience with software and systems, may
fill the educational gap between the two groups in this respect.

RQ1.2.We found that the PRO group is indistinguishable from the SEC group in terms
of assessment accuracy across all metrics. The only exception is the UI metric, for
which PRO is approximately 60% less likely to err than SEC subjects. A borderline
result is found for the AV metric.

These findings indicate that the professional expertise that characterizes the PRO group
does not necessarily improve the accuracy of the assessment over subjects with security
knowledge but limited or no professional expertise. PRO appears to have a slight advan-
tage over SEC for the AV metric; in line with findings on SEC vs CS, this again underlies
the importance of experience in applying general concepts like networking to the security
domain, when performing security tasks.

The effect of confidence on the assessment is relevant for the impact metrics CIA,
indicating that a significant source of uncertainty may emerge from the effect of the vulnera-
bility on the system. Interestingly, we found that some vulnerability types (Information
and Resource access) are likely to induce error on the A metric, suggesting that spe-
cific knowledge or expertise may be needed to discern, for example, between information
and service availability. By contrast, the vulnerability category Input is related to a sig-
nificant reduction in error rates for UI; this is expected as Input vulnerabilities generally
require user interaction for input to an application, such as opening an infected file or click-
ing on a rogue link. Similarly, Resource Access significantly reduces error on the
PR metric, as vulnerabilities of this category explicitly involve considerations on existing
attacker permissions on the vulnerable system. We did not find other specific effects of

Empirical Software Engineering

vulnerability categories on the measured outcomes, suggesting that the results are largely
independent from the specific vulnerability types.

Variance by subject (V ar(c|ID)) and by vulnerability (V ar(c|CV E)) indicate that the
intercept of the model may vary significantly for each observation (i.e. both different sub-
jects and vulnerabilities have different ‘baseline’ error rates). This is interesting because
it indicates that neither the subject variables (GROUP i) nor the vulnerability variables
(V ULNT YPEv), whereas significant in explaining part of the observed error, could fully
characterize the effect. For example, specific user characteristics or the thoroughness of
the vulnerability description may play a substantial role in determining assessment accu-
racy. On this same line, it is interesting to observe that the overall explicative power of the
model is relatively small for all the considered metrics. This can be expected for random
processes in natural experiments where the environment can not be fully controlled by the
experimenter (Agresti and Kateri 2011) (as exemplified by the variance explained by the full
model as opposed to that of the fixed effects); still, the small R2 values for the fixed effect
parameters suggest that the sole presence of security knowledge, even when confounded
by assessment confidence and vulnerability type, does not satisfactorily characterize the
observation. This further supports that other subject-specific characteristics may drive the
occurrence of an error. We investigate this in the following.

4.2 Effect of Subject Characteristics

To analyze results in finer detail, we turned to the answers from the questionnaire that
characterizes PRO subjects as described in Section 3.5. This allowed us focusing on the
target group of professionals that eventually perform the analysis in the real world (Salman
et al. 2015).

The median subject in the PRO group has six years of professional expertise in the secu-
rity field, in a range between two and 15 years (μ = 5.79, σ = 3.83). Figure 3 reports the
distribution of the levels for each measured variable. All factors are reported on an ordinal
scale (with the exception of CVSS experience for which we have a nominal scale), codified
in levels 1 → 3, where Education: 1=High School; 2=BSc degree; 3=MSc degree. Previous
CVSS experience: 1=None; 2=Yes; 3=NON-CVSS metric. System security/Network Secu-
rity/Cryptography/Attacks: 1=Novice; 2=Knowledgeable; 3=Expert (a fourth level, ‘None’,
is not reported as no participant rated him or herself less than novice on any of these
dimensions). Most subjects obtained at least a BSc degree. From discussion during the ini-
tial CVSS training it emerged that none of the participants in the PRO group had a formal

Fig. 3 Education and expertise profile of professionals in the PRO group

Empirical Software Engineering

specialization in security at the University level. The group is evenly split between partic-
ipants that have previous experience in vulnerability measurement (earlier versions of the
CVSS or other methods); most participants rated themselves as ‘Competent’ or ‘Expert’
in Network Security, and are equally split between the levels ‘Novice’ and ‘Competent or
Expert’ for all other variables.

To evaluate the effect of subject characteristics on odds of error, we have considered that:
first, the subject distribution seems to be skewed toward presence or absence of expertise
or education rather than being meaningfully distributed across all levels. For example, most
subjects attended University with only a handful interrupting their studies after high school;
similarly, few subjects rated themselves as ‘experts’ in any dimension, with most subjects
being either ‘novices’ or ‘competent’ on the subject matter. We therefore collapsed the
levels to ‘novice’ or ‘not novice’ to represent this distinction. Secondly, some subject char-
acteristics may show high levels of correlation: for example, subjects competent in system
security may be likely competent on network security as well. Similarly, highly educated
professionals may be (negatively) correlated with years of experience (as more time would
be spent on one’s studies than on the profession). We have checked for multicollinearity
problems by calculating the Variance Inflation Factor of the categorical variables defined
above, and dropped the variables that showed evidence of correlation. Education,
CVSSExp, NetSec, Crypto have been dropped because highly correlated with other
factors. This broad correlation shows that the current expectation at professional level is
for experts to have a broad spectrum of skills as we discussed above for RQ2.1 (McGet-
trick 2013; Von Solms 2005). As a result we have kept: years, (knowledge of)
attacks, (knowledge of) system security. We then define the following
regression equation:

g(e
j
vi) = c + β1Yearsi + β2Attacksi + β3SysSec

+βV ULNT YPEv + .. (3)

Table 6 reports the results. In general, we observe that not all expertise dimensions are
relevant for all metrics. This is to be expected as, for example, knowledge of attack tech-
niques may have an impact on evaluating attack complexity, but may make little difference
for other more system-oriented aspects, like requirements on user interaction.

Results for vulnerability type are qualitatively equivalent to those reported for the eval-
uation by group in Table 5. Interestingly, the overall explanatory power of the model
(accounting for both fixed and random effects) remains satisfactory, and the subject char-
acteristics are clearly effective in explaining the variance for most metrics. The only low
(< 10%)R2 fixed-effect values is for AV and can be explained by the low incidence of
error in this metric, which may be then simply be driven by random fluctuations. This is in
contrast with the effect, for example, for the AC metric that is characterized by a high vari-
ability in error (ref. Fig. 2), and for which more than 20% of the variance is explained by

Empirical Software Engineering

the measured fixed effects. This is in sharp contrast with results in Table 5 where most of
the variance was absorbed by the random effects.

5 Discussion

Implications for Software Security Lifecycle and the Cybersecurity JobMarket To know
that information security knowledge significantly improves the accuracy of a vulnerability
assessment is of no surprise. However, the actual magnitude of the improvement and the
relation between the skill set of assessors and the production of reliable security assessments
is oftentimes left uncertain. In other words, the employability and relevance of security
skills is seldom empirically investigated, and is more often left to anecdotes or to political
discourses.

According to our study, the gain produced by security knowledge appears remarkable:
security experts (SEC and PRO groups) show error rates reduced by approximately 20% (see
Fig. 2). A second result appears by looking at the average confidence declared by partici-
pants: not only assessment accuracy improves with knowledge, but so also does confidence
in assessments. In fact, the unskilled students in CS are mostly not confident, while the
skilled participants SEC+PRO declare higher confidence.

What we also observe is that the combination of skills explains most of the subjects’
variance. This is another observation often made anecdotally, but seldom empirically tested
in order to be translated into operational policies and tools useful in better support software
development and management or in the definition of recruiting and training plans.

Given the growth of cybersecurity competence areas and the increasing segmentation of
technical skills, there is an increasing need for a better knowledge of how professional skills
should be mixed for accurate security assessments, particularly in the software engineer-
ing domain where a relatively narrow skill-set is oftentimes available. On the cybersecurity
job market and in corporate human resource procedures, profiles for Technical Specialists
are commonly identified and looked for. Those represent vertical definitions of skills nar-
rowly correlated and often tied to a certain technology. Much less common are profiles with
horizontal definitions of skills bringing together more heterogeneous competences, despite
the recurrent calls for more transversal technical skills. To this end, a recent research (Van
Laar et al. 2017) has surveyed a large number of studies to understand the relation between
so-called 21st-century skills (Binkley et al. 2012) and digital skills (van Laar et al. 2018).
One observation made by that survey is that, while digital skills are moving towards the
knowledge-related skills, they do not cover the broad spectrum of 21st-century skills. These
observations are coherent with what we have observed: there is a lack of analytical studies
regarding the composition and the effect of workforce’s skills and that a better knowledge
of transversal compositions may lead to sensible improvements in the accuracy of security
assessments and software development.

Beyond Base Scores and Towards Full Software Risk Assessment The result of our exper-
iments is that evaluating the CVSS Base metric given a software vulnerability description
is difficult in practice but potentially viable, given the clear meaning of the metrics and the
limited set of admitted answers.

A problem on a different scale of complexity is to produce a risk-based assessment of a
software vulnerability with respect to the specific operational context of the software (e.g.,
including software technical environment, the organization’s characteristics, industry sec-
tor, geographical position, market, and geopolitical scenario). Even for a purely technical

Empirical Software Engineering

analysis, many more aspects must be considered and in particular the CVSS Environmental
and Temporal metrics, which are aimed at modifying the scores assigned with the Base met-
ric. These additional metrics consider the importance, to the assessor’s organization, of the
importance of the IT asset affected by a vulnerability, and the vulnerability lifecycle phase
(e.g., whether or not the vulnerability is patched or if an exploit has been released) (FIRST
2015).

Running an experiment with CVSS Environmental metrics would be an experiment in
itself as it will introduce a further confounding factor: the choice of the concrete software
deployment scenario. A preliminary experiment has being reported in Allodi et al. (2017)
were students were given the Base metrics of a set of vulnerabilities and asked to identify
the Environmental metrics in a number of credit card compliance scenarios (Williams and
Chuvakin 2012). However, significantly more analyses are needed before it could be con-
cluded what a software deployment scenario is a valid empirical benchmark. Evaluating IT
assets relevance (for an organization), and being able to correctly estimate the current state
of exploit techniques or the uncertainty of a vulnerability definition, requires not only data
sources (difficult to obtain, maintain, and update), but also involves business strategies and
corporate decisions that are hard to manually formalize.

Hence, one question that is likely to raise from the error rates, the uncertainty in
assessments quality, and the intricate dependencies between assessor’s profiles and their
performances, is whether this problem could be a good candidate for automation, possibly
supported by artificial intelligence (AI) techniques.

It appears that the idea of mitigating the uncertainty of human-driven security assess-
ments through AI techniques is gaining traction in the cybersecurity field, with several
attempts to automate security decisions, from software development to maintenance and
deployment (Conti et al. 2018; Morel 2011; Buczak and Guven 2016). With respect to
vulnerability assessments, few attempts have been done at automating CVSS Base metric
scoring so far. To the best of our knowledge, the most developed one is currently undertaken
by NIST, to employ AI-based automatic techniques to support analysts in charge of decid-
ing CVSS scores for the NVD (Marks 2018); it is still unclear which accuracy levels have
been achieved so far. Furthermore, the applicability of unsupervised models to a wide range
of cybersecurity issues remains an open issue, particularly for new projects for which only
a few (and probably biased towards certain classes of bugs) ‘ground truth’ data points are
available. With respect to the problem we are considering in this work, automatic AI-based
solutions seem still far from practical utility at the moment.

Governance, Risks, and Compliance Another important and still overlooked problem that
arises from the empirical measurement of vulnerability assessments regards compliance
with regulations. In the EU, both the GDPR (2016b) and the NIS Directive (2016a) require
systematic risk assessments and adequate risk management processes. Sanctions could be
committed by the EU to organizations with poor and insufficient procedures in case of
security breaches with data loss. In the same vein, ENISA, the EU agency for informa-
tion security, lists as priorities: risk management and governance, threat intelligence, and
vulnerability testing (ENISA 2017). However, having observed how difficult it currently
is to produce consistent and accurate vulnerability assessments and how those assessments
depend on professional skills seldom analyzed, questions about how mandatory security
risk assessments are performed inevitably arise. Our study suggests to spend more efforts in
systematic analyses of workforce’s security skills, not just as vertical specializations, could
benefit the security sector typically called ”Governance, Risk, and Compliance”, to which
many consultant companies, IT auditors, and experts of IT processes belong to.

Empirical Software Engineering

6 Threats to Validity

We here identify and discuss Construct, Internal, and External threats to validity (Wohlin
et al. 2012) of our study.

Construct The application of the CVSS methodology as a security assessment task can
only provide an approximation of the complexity and variety of real world scenarios in the
software engineering domain. On the other hand, CVSS offers a single framework involv-
ing abstract as well as technical reasoning on (security) properties of a software artifact,
engaging the different skills needed in the field (see Table 2 for reference). The spe-
cific vulnerabilities used for the assessment may bias specific competences over others;
whereas there is no reference distribution of vulnerabilities in specific software projects
(e.g. a web application likely has very different software vulnerabilities from the under-
lying webserver), we control for possible noise by breaking the analysis over the single
CVSS dimensions, and by accounting for the effect of the specific vulnerability types on the
observed outcomes.

Internal Subjects in all groups were given an introductory lecture on vulnerability assess-
ment and scoring with CVSS prior to the exercise. The exercise was conducted in class
by the same lecturer, using the same material. Another factor that may influence subjects’
assessments is the learning factor: “early assessments” might be less precise than “late
assessments”. All subjects performed the assessment following a fixed vulnerability order.
We address possible biases in the methodology by considering the within observation vari-
ance on the single vulnerabilities (Agresti and Kateri 2011). Further, the use of students as
subjects of an experiment can be controversial, especially when the matter of the study is
directly related to a course that the students are attending (Sjøberg et al. 2003). Following
the guidelines given in Sjøberg et al. (2003) we made clear to all students that their con-
sent to use their assessment for experimental purposes would not influence their student
career but would only be used to provide feedback to the CVSS SIG to improve the scoring
instructions.

A potential limitation of our approach is that we consider the CVSS SIG assessment as
the ground truth. This may introduce some bias as it happened that some CVSS evaluations
of CVE vulnerabilities performed by the SIG have been criticized by the security commu-
nity. However, in order to establish a benchmark, for what concern CVSS evaluation in
industry, the SIG is considered authoritative (as we mentioned in the introduction at least by
the credit card companies, the energy companies, the US Federal government and by several
other governments). This is a partially unsatisfactory answer but, in absence of a more solid
scientific alternative, it provides a benchmark on what evaluation secure software experts
are expected to reach by their industry peers. Even challenging the credit cards companies
assessment (which we some of us did in Allodi and Massacci (2014)) would pose the ques-
tion of how we know that one assessment is better than SIG’s assessment. More analysis is
needed on building a ground truth that does not depend on pooling expert judgments and its
limitations (Dietrich and List 2017).

External A software engineer investigating a vulnerability in a real scenario can account for
additional information beside the vulnerability description when performing the analysis.
This additional information was not provided in the context of our experiment. For this rea-
son we consider our accuracy estimates as conservative (worst-case). On the other hand,
the limited number of participants in the SEC and PRO groups, and the difficulty associated

Empirical Software Engineering

with recruiting large sets of professionals (Salman et al. 2015) calls for further studies on
the subject. At the end of the day we have only experimented with lass than twenty pro-
fessionals. Specific high-complexity security and software engineering tasks may require
highly specialized expertise, for which the diversity of tasks accounted for in our analysis
may not be representative. Different settings may also have an impact on the applicability of
our results; for example, repetitive operations or operations without strict time constraints
may stress different sets of skills or competences. Similarly, our results have limited appli-
cability for professionals with limited security experience, or with significantly different
skill-sets and expertise from those we employed in this study.

7 Conclusions

A reliable software vulnerability assessment process is instrumental for software risks prior-
itization, for secure software development, and in general for a full risk assessment process
and general IT governance. With this work, we aimed at understanding to what extent soft-
ware vulnerability assessments can be expected to be consistent and accurate and how the
results of assessments are related to the skills of the assessor.

As the testing methodology, we choose CVSS for being the industrial standard for scoring
vulnerability severity and its relatively simple structure. We conducted a natural experiment
with three groups of individuals having different technical skills and professional profiles.
Even experienced professionals in the security field may produce evaluations with high
variance, and in some cases not dissimilar to evaluations produced by students trained in
security. This behavior is similar to what is traditionally discussed in the scientific literature
about pooling expert opinions and about expert performances within some software engi-
neering problems. Moreover, we could observe how accuracy of vulnerability assessments
is related to skills and combination of skills of assessors.

Overall, our work suggests some further directions with a high potential for practi-
cal impact. The first is that more analytic and empirical studies are needed, focused on
measuring software vulnerability assessment accuracy as part of the risk assessment pro-
cess. Just saying ‘we follow an industry standards’ is not enough to warrant accurate
assessment results according to that very standard. The lack of empirical tests has been
overlooked so far, but with the mounting pressure on organization for better cybersecu-
rity management and the liability deriving from recent regulations, we believe it is no
longer possible to dismiss it. On the contrary, results of software vulnerability assessments
used by companies should always be complemented with an analysis of their accuracy.
Together with the need of measuring software vulnerability assessment accuracy, orga-
nizations should better manage the training of the workforce, not only with respect to
vertical specializations, but also with respect to the often claimed as needed transversal
skills. This is challenging for human resource departments and educational institutions, but
with a better understanding of the relation between skills and performance, it could be
achieved.

Future work to improve the practical impact of vulnerability assessment is to extend
the study with the full set of CVSS metrics (FIRST 2015), including the Temporal and
Environmental metrics, aiming at capturing the ability of assessors to evaluate the con-
crete operational environment and vulnerability lifecycle. We are particularly interested in
cooperating with other researchers to replicate our study in different national and educa-
tional contest as results might have important policy implication for university education in
software security and eventually for cybersecurity in the field.

Empirical Software Engineering

Acknowledgments This research has been partially supported by the European Union’s 7th Frame-
work Programme under grant agreement no 285223 (SECONOMICS), the H2020 Framework Programme
under grant agreement no 830929 (CyberSec4Europe) and from the NWO through the SpySpot project
(no.628.001.004).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

A.1 Example of CVSS Assessment

In the following, we discuss the assessment results for three vulnerabilities as examples of
the way participants with different skills and experiences have interpreted uncertain infor-
mation (see Fig. 4 and the following discussion of the three examples). Finally, Fig. 5 reports
error rates for all vulnerabilities of the assessment. Figure 4 reports the assessment accu-
racy (expressed in terms of number of errors) for three vulnerabilities that represent typical
outcomes: (i) the three groups perform similarly; (ii) SEC+PRO have a clear advantage over
CS; (iii) we obtain mixed results over different metrics.

– Similar accuracy over all metrics (CVE-2014-2005).

Fig. 4 Example of assessment error rates by group on three CVEs

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering

Fig. 5 Error rates for CS, SEC, and PRO by vulnerability and CVSS metrics

Empirical Software Engineering

Sophos Disk Encryption (SDE) 5.x in Sophos Enterprise Console (SEC) 5.x
before 5.2.2 does not enforce intended authentication requirements for a resume
action from sleep mode, which allows physically proximate attackers to obtain
desktop access by leveraging the absence of a login screen.

From this description, it is clear that the attacker needs to be physically proximate to the tar-
get system, which gives an obvious clue for AV; similarly, all groups showed low error rates
over the CIA assessment, as it is clear that the attacker gets full (user) access to the system
by impersonating the legitimate user. Whereas almost all SEC and PRO subjects under-
stood that the attacker need not be logged in ahead of the attack and scored PR correctly,
CS students were likely confused by the existence of an authentication mechanism for the
attacker to bypass. This suggests that well-formalized security tasks may be accomplished
comparably well by security experts and general IT experts.

– Clear effect of security knowledge (CVE-2009-1136).

The Microsoft Office Web Components Spreadsheet ActiveX control (aka
OWC10 or OWC11), as distributed in Office XP SP3 and Office 2003 SP3, Office
XP Web Components SP3, Office 2003 Web Components SP3, Office 2003 Web
Components SP1 for the 2007 Microsoft Office System, Internet Security and
Acceleration (ISA) Server 2004 SP3 and 2006 Gold and SP1, and Office Small
Business Accounting 2006, when used in Internet Explorer, allows remote attack-
ers to execute arbitrary code via a crafted call to the msDataSourceObject method,
as exploited in the wild in July and August 2009, aka “Office Web Components
HTML Script Vulnerability.”

Whereas all groups correctly understood that the attack can happen remotely (AV), the
security knowledge of SEC and PRO has a clear effect on the CIA metrics. For this vul-
nerability, students in both the SEC and CS groups were likely confused by the long list
of vulnerable systems, giving the impression that these are specific vulnerable software
configurations (a criteria for AC:H (FIRST 2015)), as opposed to a mere list of vulnerable
software. PRO subjects did not get confused by this. In this vulnerability the PRO advantage
on the UI metric, discussed in the analysis, is apparent: PRO subjects are the only one that
consistently understood that the attack process requires a user to load a webpage that will
then load the vulnerable method. This may be easier for PRO subjects to grasp because of the
typical attack dynamics of phishing or XSS attacks commonly received by organizations.

– Mixed results (CVE-2009-3873).

The JPEG Image Writer in Sun Java SE in JDK and JRE 5.0 before Update
22, JDK and JRE 6 before Update 17, and SDK and JRE 1.4.x before 1.4.2 24
allows remote attackers to gain privileges via a crafted image file, related to a
“quantization problem,” aka Bug Id 6862968.

The high error for SEC and CS students is likely caused by the misleading “remote
attackers” reference in the description: the vulnerability requires the component to load an
image file locally (irrespective of whether this is provided from remote), and qualifies for
an AV:L assessment (see also (FIRST 2015, Sec. 3.3 of the User guide)). PRO subjects did
not get tricked by the misleading wording. Again, PRO subjects outperformed both student
groups in the UI metric, understanding that the file need be loaded by the user (e.g. through
interaction in a web browser). Interestingly, all groups have a high degree of error in the
CIA metrics, suggesting that they deemed “gain privileges” as a moderate impact, whereas

Empirical Software Engineering

A.2 Mapping Between CWE and our Categories

Table 8 Mapping between CWE’s categories and our vulnerability categories

Our category CWE

Input Input validation

Input Code Injection

Input SQL Injection

Input Buffer Errors

Other Other

Insufficient Information Insufficient Information

Cryptographic Issues Cryptographic Issues

Information Information Leak / Disclosure

Information Configuration

Resource Access Improper Link Resolution Before File Access

Resource Access Permissions, Privileges, and Access Control

Resource Access Path Traversal

Resource Access Authentication Issues

in most environments Java’s JDK/JRE will be running with already high privileges, hence
giving the attacker full access.

References

Acar Y, Backes M, Fahl S, Kim D, Mazurek ML, Stransky C (2016) You Get where you’re looking for: The
impact of information sources on code security. In: Proceedings of the IEEE symposium on security and
privacy (SP). IEEE, pp 289–305

Acar Y, Backes M, Fahl S, Garfinkel S, Kim D, Mazurek ML, Stransky C (2017) Comparing the usability
of cryptographic APIs. In: Proceedings of the IEEE symposium on security and privacy (SP). IEEE,
pp 154–171

Agresti A, Kateri M (2011) Categorical data analysis. In: Lovric M (ed) International encyclopedia of
statistical science. Springer, Berlin, pp 206–208

Allodi L, Massacci F (2014) Comparing vulnerability severity and exploits using case-control studies. ACM
Transactions on Information and System Security (TISSEC) 17(1)

Allodi L, Massacci F (2017) Security events and vulnerability data for cybersecurity risk estimation. Risk
Anal. 37(8):1606–1627

Allodi L, Biagioni S, Crispo B, Labunets K, Massacci F, Santos W (2017) Estimating the assessment diffi-
culty of CVSS environmental metrics: an experiment. In: Proceedings of the international conference on
future data and security engineering. Springer, pp 23–39

Arkin B, Stender S, McGraw G (2005) Software penetration testing. IEEE Security & Privacy 3(1):84–87
Binkley M, Erstad O, Herman J, Raizen S, Ripley M, Miller-Ricci M, Rumble M (2012) Defining twenty-

first century skills. In: Griffin P, McGaw B, Care E (eds) Assessment and teaching of 21st century skills.
Springer, Dordrecht, pp 17–66

Bozorgi M, Saul LK, Savage S, Voelker GM (2010) Beyond heuristics: Learning to classify vulnerabilities
and predict exploits. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, pp 105–114

Buczak AL, Guven E (2016) A survey of data mining and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys & Tutorials 18(2):1153–1176

Burley DL, Lewis AH Jr (2019) Cybersecurity curricula 2017 and boeing: Linking curricular guidance to
professional practice. Computer 52(3):29–37

Empirical Software Engineering

Burley DL, Eisenberg J, Goodman SE (2014) Would cybersecurity professionalization help address the
cybersecurity crisis? Commun. ACM 57(2):24–27

Camerer CF, Johnson EJ (1991) The process-performance paradox in expert judgment: How can experts
know so much and predict so badly?. In: Ericsson KA, Smith J (eds) Toward a general theory of expertise:
Prospects and limits. Cambridge University Press, pp 195-217

Colesky M, Hoepman JH, Hillen C (2016) A critical analysis of privacy design strategies. In: Proceedings of
the IEEE security and privacy workshops (SPW). IEEE, pp 33–40

Conklin W, Bishop M, et al. (2018) Contrasting the csec 2017 and the cae designation requirements. In:
Proceedings of the 51st Hawaii international conference on system sciences

Conklin WA, Cline RE, Roosa T (2014) Re-engineering cybersecurity education in the US: an analysis of the
critical factors. In: Proceedings of the 47th Hawaii international conference on system sciences (HICSS).
IEEE, pp 2006–2014

Conti M, Dargahi T, Dehghantanha A (2018) Cyber threat intelligence: challenges and opportunities.
Advances in Information Security, 70, Springer International Publishing

Dietrich F, List C (2017) Probabilistic opinion pooling generalized. Part one: general agendas. Soc. Choice
Welf. 48(4):747–786

Doynikova E, Kotenko I (2017) CVSS-based probabilistic risk assessment for cyber situational aware-
ness and countermeasure selection. In: Proceedings of the 25th Euromicro international conference on
parallel, distributed and network-based processing (PDP). IEEE, pp 346–353

Edmundson A, Holtkamp B, Rivera E, Finifter M, Mettler A, Wagner D (2013) An empirical study on the
effectiveness of security code review. In: Proceedings of the international symposium on engineering
secure software and systems. Springer, pp 197–212

ENISA (2017) Priorities for EU research - analysis of the ECSO Strategic Research and Innovation Agenda
(SRIA). https://www.enisa.europa.eu/publications/priorities-for-eu-research

FIRST (2015) Common vulnerability scoring system v3.0: Specification Document. Tech. rep., FIRST. http://
www.first.org/cvss

Geer D (2015) For good measure: The undiscovered. login:: the magazine of USENIX & SAGE 40(2):50–52
Hallett J, Larson R, Rashid A (2018) Mirror, mirror, on the wall: What are we teaching them all? Charac-

terising the focus of cybersecurity curricular frameworks. In: Proceedings of the USENIX workshop on
advances in security education (ASE 18), USENIX Association, Baltimore, MD

Holm H, Afridi KK (2015) An expert-based investigation of the common vulnerability scoring system.
Computers & Security 53:18–30

Hudnall M (2019) Educational and workforce cybersecurity frameworks: comparing, contrasting, and
mapping. Computer 52(3):18–28

Islam S, Mouratidis H, Jürjens J (2011) A framework to support alignment of secure software engineering
with legal regulations. Software & Systems Modeling 10(3):369–394

ISO (2008) ISO/IEC 27005 Information technology – Security techniques – Information security risk
management. Tech. rep., http://www.iso.org/iso/catalogue detail?csnumber=56742

Jacobs J, Romanosky S, Adjerid I, Baker W (2019) Improving vulnerability remediation through better
exploit prediction. In: Proceedings of the workshop on the economics of information security. https://
weis2019.econinfosec.org/wp-content/uploads/sites/6/2019/05/WEIS 2019 paper 53.pdf

Joint Task Force on Cybersecurity Education (2017) Curriculum guidelines for post-secondary
degree programs in cybersecurity (CSEC2017). https://www.acm.org/binaries/content/assets/education/
curricula-recommendations/csec2017.pdf

Kalyuga S, Ayres P, Chandler P, Sweller J (2003) The expertise reversal effect. Educational Psychologist
38(1):23–31

Katsantonis M, Fouliras P, Mavridis I (2017) Conceptual analysis of cyber security education based on
live competitions. In: Proceedings of Global Engineering Education Conference (EDUCON). IEEE,
pp 771–779

Kretz DR (2018) Experimentally evaluating bias-reducing visual analytics techniques in intelligence analysis.
In: Geoffrey E (ed) Cognitive biases in visualizations. Springer, Cham, pp 111-135

van Laar E, van Deursen AJ, van Dijk JA, de Haan J (2018) 21st-century digital skills instrument aimed at
working professionals: Conceptual development and empirical validation. Telematics and Informatics
35(8):2184–2200

Labunets K, Massacci F, Paci F, Marczak S, de Oliveira FM (2017) Model comprehension for security
risk assessment: an empirical comparison of tabular vs. graphical representations. Empir. Softw. Eng.
22(6):3017–3056

Lichtenstein S, Fischhoff B, Phillips LD (1982) Calibration of probabilities: The state of the art to 1980. In:
Kahneman D, Slovic P, Tversky A (eds) Judgment under uncertainty: heuristics and biases. Cambridge
University Press, pp 306–334

https://www.enisa.europa.eu/publications/priorities-for-eu-research
http://www.first.org/cvss
http://www.first.org/cvss
http://www.iso.org/iso/catalogue_detail?csnumber=56742
https://weis2019.econinfosec.org/wp-content/uploads/sites/6/2019/05/WEIS_2019_paper_53.pdf
https://weis2019.econinfosec.org/wp-content/uploads/sites/6/2019/05/WEIS_2019_paper_53.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/csec2017.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/csec2017.pdf

Empirical Software Engineering

Marks J (2018) NIST teams up with IBM Watson to rate how dangerous computer bugs are. https://www.
nextgov.com/cybersecurity/2018/11/nist-teams-ibms-watson-rate-how-dangerous-computer-bugs-are/
152545/

McGettrick A (2013) Toward effective cybersecurity education. IEEE Security & Privacy 11(6):66–68
McGraw G (2006) Software security: building security in, vol 1. Addison-Wesley Professional
Mell P, Scarfone K, Romanosky S (2007) A complete guide to the common vulnerability scoring system

version 2.0. Tech. rep., FIRST, Available at http://www.first.org/cvss
Meyer BD (1995) Natural and quasi-experiments in economics. Journal of Business & Economic Statistics

13(2):151–161
Microsoft (2019) Microsoft security development lifecycle (SDL). https://www.microsoft.com/en-us/

securityengineering/sdl/
Morel B (2011) Artificial intelligence and the future of cybersecurity. In: Proceedings of the 4th ACM

workshop on security and artificial intelligence. ACM, pp 93–98
Morrison P, Smith BH, Williams L (2017) Surveying security practice adherence in software development.

In: Proceedings of Hot Topics in Science of Security: Symposium and Bootcamp. ACM, pp 85–94
Morrison P, Moye D, Pandita R, Williams L (2018) Mapping the field of software life cycle security metrics.

Inf. Softw. Technol. 102:146–159
Murphy SA, Van der Vaart AW (2000) On profile likelihood. J. Am. Stat. Assoc. 95(450):449–465
Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining r2 from generalized linear

mixed-effects models. Methods Ecol. Evol. 4(2):133–142
NIST (2018) Vulnerability Description Ontology (VDO): a framework for characterizing vulnerabilities.

https://csrc.nist.gov/publications/detail/nistir/8138/draft
Onarlioglu K, Yilmaz UO, Kirda E, Balzarotti D (2012) Insights into user behavior in dealing with internet

attacks. In: Proceedings of the network and distributed system security symposium (NDSS), San Diego,
CA

OWASP (2019) OWASP risk rating methodology. https://www.owasp.org/index.php/OWASP Risk Rating
Methodology

PCI-DSS (2018) Payment Card Industry (PCI) data security standard - requirements and security assessment
procedures version 3.2.1. Tech. rep., https://www.pcisecuritystandards.org/documents/PCI DSS v3-2-1.
pdf

Reece R, Stahl BC (2015) The professionalisation of information security: Perspectives of UK practitioners.
Computers & Security 48:182–195

SafeCODE (2018) Fundamental practices for secure software development, third edition. https://safecode.
org/publications/#safecodepublications-2362

Salman I, Misirli AT, Juristo N (2015) Are students representatives of professionals in software engineering
experiments? In: Proceedings of the 37th international conference on software engineering (ICSE), vol 1,
pp 666-676

Santos H, Pereira T, Mendes I (2017) Challenges and reflections in designing cyber security curriculum. In:
Proceedings of the world engineering education conference (EDUNINE). IEEE, pp 47–51

Scarfone K, Mell P (2009) An analysis of CVSS version 2 vulnerability scoring. In: Proceedings of the
empirical software engineering and measurement (ESEM) conference, pp 516–525

Shumba R, Ferguson-Boucher K, Sweedyk E, Taylor C, Franklin G, Turner C, Sande C, Acholonu G, Bace
R, Hall L (2013) Cybersecurity, women and minorities: findings and recommendations from a prelimi-
nary investigation. In: Proceedings of the ITiCSE working group reports conference on Innovation and
technology in computer science education-working group reports. ACM, pp 1–14

Singh C (2002) When physical intuition fails. Am. J. Phys. 70(11):1103–1109
Sjøberg D, Anda B, Arisholm E, Dybå T, Jørgensen M, Karahasanović A, Vokáč M (2003) Challenges

and recommendations when increasing the realism of controlled software engineering experiments. In:
Empirical methods and studies in software engineering, LNCS, vol 2765. Springer, Berlin, pp 24–38

Spring J, Hatleback E, Householder AD, Manion A, Shick D (2018) White paper: Towards improving CVSS.
Tech. rep., Carnegie Mellon University, Software Engineering Institute. https://resources.sei.cmu.edu/
library/asset-view.cfm?assetID=538368

The Parliament and the Council of European Union (2016a) Directive (EU) 2016/1148. https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L .2016.194.01.0001.01.ENG&toc=OJ:L:2016:194:
TOC

The Parliament and the Council of European Union (2016b) Regulation (EU) 2016/679. https://eur-lex.
europa.eu/legal-content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504

Tripwire (2019) Advanced vulnerability risk scoring and prioritization. https://www.tripwire.com/solutions/
vulnerability-and-risk-management/vulnerability-risk-score-register/

https://www.nextgov.com/cybersecurity/2018/11/nist-teams-ibms-watson-rate-how-dangerous-computer-bugs-are/152545/
https://www.nextgov.com/cybersecurity/2018/11/nist-teams-ibms-watson-rate-how-dangerous-computer-bugs-are/152545/
https://www.nextgov.com/cybersecurity/2018/11/nist-teams-ibms-watson-rate-how-dangerous-computer-bugs-are/152545/
http://www.first.org/cvss
https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://csrc.nist.gov/publications/detail/nistir/8138/draft
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://safecode.org/publications/#safecodepublications-2362
https://safecode.org/publications/#safecodepublications-2362
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=538368
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=538368
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.194.01.0001.01.ENG&toc=OJ:L:2016:194:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.194.01.0001.01.ENG&toc=OJ:L:2016:194:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.194.01.0001.01.ENG&toc=OJ:L:2016:194:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504
https://www.tripwire.com/solutions/vulnerability-and-risk-management/vulnerability-risk-score-register/
https://www.tripwire.com/solutions/vulnerability-and-risk-management/vulnerability-risk-score-register/

Empirical Software Engineering

Van Laar E, van Deursen AJ, van Dijk JA, de Haan J (2017) The relation between 21st-century skills and
digital skills: a systematic literature review. Computers in Human Behavior 72:577–588

Viega J, McGraw GR (2001) Building secure software: How to avoid security problems the right way,
portable documents. Pearson Education, London

Von Solms B (2005) Information security governance: COBIT or ISO 17799 or both? Computers & Security
24(2):99–104

Wermke D, Mazurek M (2017) Security developer studies with GitHub users: Exploring a convenience sam-
ple. In: Proceedings of the symposium on usable privacy and security (SOUPS), USENIX Association,
pp 81–95

Williams BR, Chuvakin A (2012) PCI Compliance: Understand and implement effective PCI data security
standard compliance. Syngress Elsevier

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering, 1st edn. Springer, Berlin

Workman M (2008) Wisecrackers: a theory-grounded investigation of phishing and pretext social engineer-
ing threats to information security. Journal of the Association for Information Science and Technology
59(4):662–674

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Luca Allodi is an assistant professor in the Security Group at the
Eindhoven University of Technology, the Netherlands. He received
his Ph.D. in Information Security from the University of Trento, Italy,
in 2015 with a thesis on software vulnerability risk. His main research
interests include economic and human aspects of information secu-
rity, with a focus on attacker and cyber-criminal operations.

Marco Cremonini is an Assistant Professor at the University of
Milan, Italy. He received his Ph.D. in the Department of Electronic,
Computer Science, and System Engineering at the University of
Bologna, Italy. His research interests are in the area of coevolving
dynamic networks, social sciences and technology, social aspects of
information security, and risk analysis.

Empirical Software Engineering

Fabio Massacci (PhD in Computer Engineering, URome La
Sapienza). Has been at Cambridge, Siena and Toulouse and he is
now full professor at UTrento. He published 250+ peer-reviewed
papers and received the Ten Years Most Influential Paper award by
the IEEE Requirement Engineering Conference in 2015 for his work
on security requirements. He coordinated several EU project includ-
ing the project SECONOMICS ”Socio-economics meet security” and
is responsible for the educational activities of the European Pilot Net-
work of Cyber Security Competence Centers CyberSec4Europe. He
participates to the CVSS SIG the world standard on vulnerabilities..
He is currently Department Editor of ‘Building Security in’ at IEEE
Security and Privacy Magazine.

Woohyun Shim is an Associate Research Fellow at the Korea Insti-
tute of Public Administration. He completed Ph.D in the Dept. of
Media & Information at Michigan State University. His research cov-
ers a wide range of topics related to IT security economics, innovation
in ICT as well as the public policy and governance issues for utilizing
the full benefits of ICT and emerging technologies for society.

Affiliations

Luca Allodi1 ·Marco Cremonini2 · Fabio Massacci3 ·Woohyun Shim4

Luca Allodi
l.allodi@tue.nl

Marco Cremonini
marco.cremonini@unimi.it

Woohyun Shim
whshim@kipa.re.kr

1 Eindhoven University of Technology, Eindhoven, Netherlands
2 University of Milan, Milan, Italy
3 University of Trento, Trento, Italy
4 Korea Institute of Public Administration, Seoul, South Korea

mailto: l.allodi@tue.nl
mailto: marco.cremonini@unimi.it
mailto: whshim@kipa.re.kr

	Measuring the accuracy of software vulnerability assessments: experiments with students and professionals
	Abstract
	Introduction
	Methods
	Summary of Contributions

	Related Work
	Professionalization
	Experiments with Students

	Study Design
	Analysis Goals and Research Questions
	Task Mapping and Vulnerability Selection
	Participants and Recruiting Procedure
	Students
	Professionals

	Data Collection
	Analysis Methodology

	Empirical Results
	Effect of Security Knowledge
	Assessment Confidence
	Severity Estimations
	Assessment Errors

	Effect of Subject Characteristics

	Discussion
	Implications for Software Security Lifecycle and the Cybersecurity Job Market
	Beyond Base Scores and Towards Full Software Risk Assessment
	Governance, Risks, and Compliance

	Threats to Validity
	Construct
	Internal
	External

	Conclusions
	Appendix A
	A.1 Example of CVSS Assessment
	A.2 Mapping Between CWE and our Categories
	References
	Affiliations

