161 research outputs found

    Photon trains and lasing : The periodically pumped quantum dot

    Get PDF
    We propose to pump semiconductor quantum dots with surface acoustic waves which deliver an alternating periodic sequence of electrons and holes. In combination with a good optical cavity such regular pumping could entail anti-bunching and sub-Poissonian photon statistics. In the bad-cavity limit a train of equally spaced photons would arise.Comment: RevTex, 5 pages, 1 figur

    Quantized charge transport through a static quantum dot using a surface acoustic wave

    Full text link
    We present a detailed study of the surface acoustic wave mediated quantized transport of electrons through a split gate device containing an impurity potential defined quantum dot within the split gate channel. A new regime of quantized transport is observed at low RF powers where the surface acoustic wave amplitude is comparable to the quantum dot charging energy. In this regime resonant transport through the single-electron dot state occurs which we interpret as turnstile-like operation in which the traveling wave amplitude modulates the entrance and exit barriers of the quantum dot in a cyclic fashion at GHz frequencies. For high RF powers, where the amplitude of the surface acoustic wave is much larger than the quantum dot energies, the quantized acoustoelectric current transport shows behavior consistent with previously reported results. However, in this regime, the number of quantized current plateaus observed and the plateau widths are determined by the properties of the quantum dot, demonstrating that the microscopic detail of the potential landscape in the split gate channel has a profound influence on the quantized acoustoelectric current transport.Comment: 9 page

    Nonlinear absorption of surface acoustic waves by composite fermions

    Full text link
    Absorption of surface acoustic waves by a two-dimensional electron gas in a perpendicular magnetic field is considered. The structure of such system at the filling factor Μ\nu close to 1/2 can be understood as a gas of {\em composite fermions}. It is shown that the absorption at Μ=1/2\nu =1/2 can be strongly nonlinear, while small deviation form 1/2 will restore the linear absorption. Study of nonlinear absorption allows one to determine the force acting upon the composite fermions from the acoustic wave at turning points of their trajectories.Comment: 7 pages, 1 figure, submitted to Europhysics letter

    Nonlinear acousto-electric transport in a two-dimensional electron system

    Full text link
    We study both theoretically and experimentally the nonlinear interaction between an intense surface acoustic wave and a two-dimensional electron plasma in semiconductor-piezocrystal hybrid structures. The experiments on hybrid systems exhibit strongly nonlinear acousto-electric effects. The plasma turns into moving electron stripes, the acousto-electric current reaches its maximum, and the sound absorption strongly decreases. To describe the nonlinear phenomena, we develop a coupled-amplitude method for a two-dimensional system in the strongly nonlinear regime of interaction. At low electron densities the absorption coefficient decreases with increasing sound intensity, whereas at high electron density the absorption coefficient is not a monotonous function of the sound intensity. High-harmonic generation coefficients as a function of the sound intensity have a nontrivial behavior. Theory and experiment are found to be in a good agreement.Comment: 27 pages, 6 figure

    Pumping in an interacting quantum wire

    Full text link
    We study charge and spin pumping in an interacting one-dimensional wire. We show that a spatially periodic potential modulated in space and time acts as a quantum pump inducing a dc-current component at zero bias. The current generated by the pump is strongly affected by the interactions. It has a power law dependence on the frequency or temperature with the exponent determined by the interaction in the wire, while the coupling to the pump affects the amplitudes only. We also show that pure spin-pumping can be achieved, without the presence of a magnetic field.Comment: 13 pages,2 figure

    Quantum Spin Pump in S=1/2 antiferromagnetic chains -Holonomy of phase operators in sine-Gordon theory-

    Full text link
    In this paper, we propose the quantum spin pumping in quantum spin systems where an applied electric field (EE) and magnetic field (HH) cause a finite spin gap to its critical ground state. When these systems are subject to alternating electromangetic fields; (E,H)=(sin⁥2πtT,cos⁥2πtT)(E,H)=(\sin\frac{2\pi t}{T},\cos\frac{2\pi t}{T}) and travel along the {\it{loop}} Γloop\Gamma_{\rm{loop}} which encloses their critical ground state in this EE-HH phase diagram, the locking potential in the sine-Gordon model slides and changes its minimum. As a result, the phase operator acquires 2π2\pi holonomy during one cycle along Γloop\Gamma_{\rm{loop}}, which means that the quantized spin current has been transported through the bulk systems during this adiabatic process. The relevance to real systems such as Cu-benzoate and Yb4As3{\rm{Yb}}_4{\rm{As}}_3 is also discussed.Comment: 10 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 74 (2005) no. 4. Typos corrected in the revised versio

    Streamwise-travelling viscous waves in channel flows

    Get PDF
    The unsteady viscous flow induced by streamwise-travelling waves of spanwise wall velocity in an incompressible laminar channel flow is investigated. Wall waves belonging to this category have found important practical applications, such as microfluidic flow manipulation via electro-osmosis and surface acoustic forcing and reduction of wall friction in turbulent wall-bounded flows. An analytical solution composed of the classical streamwise Poiseuille flow and a spanwise velocity profile described by the parabolic cylinder function is found. The solution depends on the bulk Reynolds number R, the scaled streamwise wavelength (Formula presented.), and the scaled wave phase speed U. Numerical solutions are discussed for various combinations of these parameters. The flow is studied by the boundary-layer theory, thereby revealing the dominant physical balances and quantifying the thickness of the near-wall spanwise flow. The Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) theory is also employed to obtain an analytical solution, which is valid across the whole channel. For positive wave speeds which are smaller than or equal to the maximum streamwise velocity, a turning-point behaviour emerges through the WKBJ analysis. Between the wall and the turning point, the wall-normal viscous effects are balanced solely by the convection driven by the wall forcing, while between the turning point and the centreline, the Poiseuille convection balances the wall-normal diffusion. At the turning point, the Poiseuille convection and the convection from the wall forcing cancel each other out, which leads to a constant viscous stress and to the break down of the WKBJ solution. This flow regime is analysed through a WKBJ composite expansion and the Langer method. The Langer solution is simpler and more accurate than the WKBJ composite solution, while the latter quantifies the thickness of the turning-point region. We also discuss how these waves can be generated via surface acoustic forcing and electro-osmosis and propose their use as microfluidic flow mixing devices. For the electro-osmosis case, the Helmholtz–Smoluchowski velocity at the edge of the Debye–HĂŒckel layer, which drives the bulk electrically neutral flow, is obtained by matched asymptotic expansion

    Towards a quantum representation of the ampere using single electron pumps

    Full text link
    Electron pumps generate a macroscopic electric current by controlled manipulation of single electrons. Despite intensive research towards a quantum current standard over the last 25 years, making a fast and accurate quantised electron pump has proved extremely difficult. Here we demonstrate that the accuracy of a semiconductor quantum dot pump can be dramatically improved by using specially designed gate drive waveforms. Our pump can generate a current of up to 150 pA, corresponding to almost a billion electrons per second, with an experimentally demonstrated current accuracy better than 1.2 parts per million (ppm) and strong evidence, based on fitting data to a model, that the true accuracy is approaching 0.01 ppm. This type of pump is a promising candidate for further development as a realisation of the SI base unit ampere, following a re-definition of the ampere in terms of a fixed value of the elementary charge.Comment: 8 pages, 7 figure
    • 

    corecore