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Abstract The unsteady viscous flow induced by streamwise-travelling waves of spanwise wall velocity in an

incompressible laminar channel flow is investigated. Wall waves belonging to this category have found important

practical applications, such as microfluidic flow manipulation via electro-osmosis and surface acoustic forcing

and reduction of wall friction in turbulent wall-bounded flows. An analytical solution composed of the classical

streamwise Poiseuille flow and a spanwise velocity profile described by the parabolic cylinder function is found.

The solution depends on the bulk Reynolds number R, the scaled streamwise wavelength λ, and the scaled wave

phase speed U . Numerical solutions are discussed for various combinations of these parameters. The flow is studied

by the boundary-layer theory, thereby revealing the dominant physical balances and quantifying the thickness of

the near-wall spanwise flow. The Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) theory is also employed to obtain

an analytical solution, which is valid across the whole channel. For positive wave speeds which are smaller than or

equal to the maximum streamwise velocity, a turning-point behaviour emerges through the WKBJ analysis. Between

the wall and the turning point, the wall-normal viscous effects are balanced solely by the convection driven by the

wall forcing, while between the turning point and the centreline, the Poiseuille convection balances the wall-normal

diffusion. At the turning point, the Poiseuille convection and the convection from the wall forcing cancel each other

out, which leads to a constant viscous stress and to the break down of the WKBJ solution. This flow regime is

analysed through a WKBJ composite expansion and the Langer method. The Langer solution is simpler and more

accurate than the WKBJ composite solution, while the latter quantifies the thickness of the turning-point region. We

also discuss how these waves can be generated via surface acoustic forcing and electro-osmosis and propose their

use as microfluidic flow mixing devices. For the electro-osmosis case, the Helmholtz–Smoluchowski velocity at the

edge of the Debye–Hückel layer, which drives the bulk electrically neutral flow, is obtained by matched asymptotic

expansion.
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1 Introduction

In this paper, we study the unsteady laminar flow generated in a Poiseuille flow channel by the following wall waves

of sinusoidal spanwise velocity travelling along the streamwise direction:

w∗
w = A∗ cos

[
2π(x∗ − U∗t∗)/λ∗], (1)

where w∗
w is the spanwise wall velocity, x∗ indicates the streamwise direction, t∗ denotes time, and A∗ denotes

the oscillation amplitude. Two parameters define the wall motion: the streamwise wavelength λ∗ and the phase

speed U∗. The third parameter defining the physical system is the Reynolds number R based on the bulk velocity

of the streamwise Poiseuille flow U∗
b and the half channel height h∗. Our study is theoretical and numerical and

aims at a complete characterization of the viscous flow in the parameter space. In the following, a variety of flow

configurations where these waves may play an important role are discussed, including flow mixing in microfluidic

systems and turbulent drag reduction.

1.1 Travelling waves in microfluidic systems

Small-scale oscillating flows often feature in microfluidic and micro-electromechanical systems. A benefit of the

oscillations is the promotion of mixing in the flow, which, as a result of the small length scales and the small

velocities involved, is essentially laminar. At such Reynolds numbers, R ≈ 0.1–10, oscillating flows such as that

induced by the wall motion (1) can be enforced by surface acoustic waves or by electro-osmosis waves.

Surface acoustic waves (SAWs) have been utilized extensively for a wide range of microfluidic applications, such

as micromixing, micropumping, drop transport, cell handling, and microejectors [1–5], although shear-horizontal

waves have never been employed in microfluidic flow mixing. SAWs are created by piezoelectric transduction

within a thin solid substrate below a fluid, so that electric power causes the mechanical deformation of the substrate,

which, in turn, leads to the motion of the fluid.

Wall-normal Rayleigh acoustic waves have been used for mixing of microfluidic flows [6–9]. However, they

generate compression waves in a liquid and suffer from energy dissipation (leaky waves) [6,10]. When instead

in-plane motion occurs, thanks to the mismatch of the sound speeds and densities of the substrate material and

the fluid, the acoustic propagation is confined within the substrate, while the fluid flow is incompressible. This is

a relevant simplification for the analysis of SAWs because the incompressible Navier–Stokes equations with an

imposed slip velocity describe the dynamics (i.e. an analytical solution for streamwise standing waves is found on

p. 133 of the book by Bruus [11]). Tan et al. [4], in their Fig. 2c, show interfacial standing shear waves which are

in-plane and sinusoidal as an interesting variant of SAWs. Although no bulk flow is present in the system studied

by Neumann et al. [12], this example shows that it is possible to generate shear-horizontal acoustic waves in a thin

solid substrate to affect an overlying liquid layer.

Shear-horizontal surface waves, also called Love waves when a layer of lower acoustic velocity is used for

increased sensitivity, have also been studied extensively as efficient biosensors and chemical sensors for flowing

solutions because of their low dissipation when compared with wall-normal Rayleigh waves [13,14]. However, these

studies are mainly experimental and Lange et al. [13] indeed remark that improved design of these biosensors can

be achieved by studying the fluid dynamics generated by the interaction of the spanwise waves and the overriding

streamwise flow. Figure 1 depicts a schematic of a biosensor based on shear-horizontal travelling waves, an excellent

technological application of the waves studied herein. Shear-horizontal SAWs waves have also been employed by

Neumann et al. [12] to manipulate proteins attached to supported lipid bilayers. Love waves have also been used

more recently as non-intrusive rheometers. In particular, the interaction between the SAWs and the liquid has been

studied to extract the relationship between the wave attenuation and the viscosity [15,16].

SAWs are usually characterized by maximum surface velocities of 1 m/s and frequencies in the broad range

of 100 kHz–100 MHz. The characteristic wavelength can be up to 100 µm, i.e. comparable with the microfluidic
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Fig. 1 Schematic of a

shear-horizontal SAW

biosensor, adapted from

Lange et al. [13]. The large

black arrows indicate the

liquid sample flowing over

the piezoelectric crystal

substrate, the small black

arrow denotes the electric

signal exchanged between

the two interdigital

transducers, and the blue

sinusoidal line shows the

travelling surface acoustic

wave

channel height. Therefore, for Reynolds numbers of the order of unity, realistic ratios between the streamwise

wavelength and the channel height can be in the range 0.1–1. The ratio between the wall wave speed and the bulk

fluid velocity can vary greatly, namely from null to the order of 104. The latter scenario is more common as it

corresponds to a single acoustic wave, travelling at the sound speed of about 1500 m/s below a liquid flowing at

about 100 µm/s. Nonetheless, standing acoustic waves can be generated by the interference of travelling waves [8].

In addition to mechanical wall motions, travelling wave on the walls of a microchannel of the form (1) can also

be engendered via electro-osmosis [17–19]. Surface electrodes driven by AC currents below a fluid can generate a

uniform plug flow within a very thin charged Debye–Hückel layer, which drags the overlying uncharged fluid by

shear stresses. As remarked by Ajdari [18], since these layers are usually much thinner than the radii of curvature

of the surface and the channel height, it can be assumed that the uncharged fluid is simply affected by an imposed

effective slip velocity, which is linearly related to the electric field, and that the bulk flow is described by the

incompressible Navier–Stokes equations. A concise explanation of the physics of wall-based electro-osmosis in

microchannels is found in Chang and Yang [20]. These shear motions have also been proposed as an electro-osmotic

pumping device to drive fluid along a channel [21,22]. Micromixing has also been successfully achieved through

electro-osmotic wall forcing [23–27].

In line with these microfluidic mixing applications, we complement our theoretical/numerical results with ideas

on the laboratory realization of the waves engendered by (1) through surface acoustic forcing by piezoelectric

crystals and through electro-osmosis actuation for microfluidic flow mixing (refer to Sect. 8).

1.2 Travelling waves for turbulent drag reduction

The wall wave motion given by (1) has also been studied beneath wall-bounded turbulent flows, first via direct

numerical simulations in a turbulent channel flow by Quadrio et al. [31] and Quadrio and Ricco [32], and experi-

mentally in a pipe with rotating sections by Auteri et al. [28] and in a wind-tunnel flow over a deformable Kagome

lattice surface by Bird et al. [29,30]. Drag reduction or drag increase occurs depending on the forcing parameters λ

and U . For the pipe with rotating sections [28] and the wind-tunnel flow over the Kagome surface [29,30], the bulk

Reynolds number is obviously much larger than unity and λ is either comparable or a few times larger than the pipe

radius in the case of Auteri et al. [28] or the boundary-layer thickness in the case of Bird et al. [29,30].

It is obviously very different to investigate the flow engendered by the waves given by (1) in the laminar regime

or in the fully developed turbulent regime. Nevertheless, there is ample evidence that the laminar profiles generated

by spanwise wall motion are very useful to study various aspects of the corresponding fully turbulent flow. Choi

et al. [33] and Quadrio and Ricco [32] have indeed verified that the unsteady space-averaged spanwise profile may

closely match the corresponding laminar solution. The good agreement occurs when the wall forcing acts on a time

scale which is much shorter than the life time of the near-wall turbulent structures. Under these conditions, the
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drag reduction scales with the thickness of the spanwise boundary layer, which is computed through the laminar

solution. Furthermore, the near-wall laminar solutions have been instrumental for the accurate computation of

the power spent for moving the wall against the viscous flow resistance, the optimal layer thickness which leads

to maximum drag reduction, or the smallest period of wall forcing which guarantees drag reduction [32]. Choi

et al. [33] and Ricco et al. [34] have also utilized the laminar Stokes layer solution to define a scaling parameter for

drag reduction prediction and Choi [35] has taken advantage of the spanwise laminar flow behaviour to interpret

the changes of the near-wall turbulent structures.

1.3 Objectives and structure of the paper

Motivated by the possibility of microfluidic flow manipulation offered by shear-horizontal waves, by their extensive

use as bio- and chemical sensors, and by the importance of the laminar solutions for the study of turbulent drag

reduction by spanwise forcing, a complete study on the laminar spanwise flow engendered by the wall motion

given by (1) is presented herein. The investigation is based on numerical calculations and on asymptotic analysis.

The spanwise momentum equation is first simplified to a second-order ordinary differential equation and solved

numerically by a second-order finite-difference scheme. Its solution is also expressed analytically through the

parabolic cylinder function (hereinafter referred to as PCF).

The Reynolds number R, the wave speed U , and the wavelength λ are treated as asymptotic parameters, thus

deriving asymptotic analytical solutions utilizing the boundary-layer and the Wentzel–Kramers–Brillouin–Jeffreys

(WKBJ) theories. Employing the boundary-layer scaling, the thicknesses of the near-wall viscous layers are quan-

tified, while the WKBJ solution gives the correct flow structure across the whole channel. When the streamwise

diffusion is negligible, the convection term due to the wave motion may balance the streamwise Poiseuille flow

convection term in a specified range of wave phase speeds. For these cases, alternative solutions found using WKBJ

turning-point composite expansions and the method of Langer [36,37] are derived. All the asymptotic solutions

show excellent agreement with the numerical solutions and offer the further advantage over the numerical approach

that the dominant physical balances are revealed. The final aim of our work is to discuss how these waves can be

generated in a laboratory via electro-osmosis and surface acoustic forcing, and to propose them as microfluidic flow

mixers.

The scaling and the simplification of the spanwise momentum equation are discussed in Sect. 2, while Sect. 3

presents the analytical solution in terms of the PCF. The numerical results are shown in Sect. 4, the boundary-layer

theory results are discussed in Sect. 5, while Sect. 6 presents the WKBJ results and Sect. 7 contains the Langer

solution. A discussion on future applications of the travelling waves for flow mixing is contained in Sect. 8 and a

summary is found in Sect. 9.

2 Governing equation

Laminar flow confined between two infinite parallel plates at a distance 2h∗ is considered. The superscript ∗
hereinafter denotes a dimensional quantity. The streamwise, wall-normal, and spanwise directions are indicated

by x∗, y∗, and z∗, respectively, while t∗ denotes time. The walls move along the spanwise direction with velocity

given by (1), where without loss of generality, the wavelength λ∗ > 0 because the flow is invariant to a change

of λ∗ to −λ∗. The flow is governed by the incompressible Navier–Stokes equations:

∇ · u∗ = 0, (2a)

∂u∗

∂t∗
+
(
u∗ · ∇

)
u∗ = − 1

ρ∗ ∇ p∗ + ν∗∇2u∗, (2b)

where u∗ = {u∗, v∗, w∗} is the velocity vector with components along x∗, y∗, and z∗, p∗ is the pressure, ρ∗ is the

density of the fluid, ν∗ is the kinematic viscosity of the fluid, and ∇ = {∂/∂x∗, ∂/∂y∗, ∂/∂z∗}. At the walls y∗ = 0

and y∗ = 2h∗, the no-slip and no-penetration boundary conditions are
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u∗ = v∗ = 0, and w∗ = A∗
R
[
e2π i(x∗−U∗t∗)/λ∗]

, (3)

where R indicates the real part. The phase speed U∗ can be positive (forward-travelling wave), null (standing wave),

or negative (backward-travelling wave). Figure 2 shows the flow domain for forward-travelling waves.

As the boundary conditions (3) depend only on x∗ and t∗ and a pressure gradient is present only along x∗,

all terms containing z∗ derivatives vanish. The continuity equation (2a) and the x-momentum equation (2b) are

thus independent of w∗. The streamwise flow is the classical Poiseuille flow, while w∗ satisfies the simplified z-

momentum equation

∂w∗

∂t∗
+ u∗ ∂w∗

∂x∗ = ν∗
(

∂2w∗

∂x∗2
+ ∂2w∗

∂y∗2

)
. (4)

The x∗ coordinate is now scaled by the wall streamwise wavelength λ∗, while the y∗ coordinate is scaled

by h∗ to enable the definition of the dimensionless coordinates x = x∗/λ∗ = O(1) and y = y∗/h∗ = O(1).

The non-dimensional streamwise velocity u = u∗/U∗
b = O(1) is defined using the bulk velocity U∗

b =
(1/h∗)

∫ h∗

0 u∗(y∗) dy∗, while the spanwise velocity w∗ is scaled by the wave amplitude A∗, i.e. w = w∗/A∗ =
O(1). The time is non-dimensionalized by the period of the wall motion, i.e. t = t∗U∗/λ∗ = O(1). In terms of

these non-dimensional quantities Eq. (4) becomes

∂w

∂t
+ U∗

b

U∗ u
∂w

∂x
= ν∗

λ∗U∗
∂2w

∂x2
+ ν∗λ∗

h∗2U∗
∂2w

∂y2
, (5)

Spanwise viscous flow
w∗(x∗, y∗, t∗) Poiseuille flow u∗(y∗) = 3U∗

b
y∗(1 − y∗/2h∗)/h∗

x∗

y∗

z∗

2h∗

w∗

w
= A∗ cos [2π (x∗

− U∗t∗) /λ∗]

U∗

λ∗

Fig. 2 Physical domain for Poiseuille flow with forward-travelling wall waves. The channel width is 2h∗, λ∗ is the streamwise

wavelength of the wall forcing, and U∗ is the phase speed
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subject to w(0) = w(2) = R{exp[2π i(x − t)]}. By introducing the new variable ξ = x − t and by expressing the

solution as

w = R

[
W (y)e2π iξ

]
, (6)

Eq. (5) simplifies to

W ′′(y)︸ ︷︷ ︸
y-diffusion

+
(

3π iR

λ
y2 − 6π iR

λ
y

︸ ︷︷ ︸
Poiseuille convection

+2π iRU

λ︸ ︷︷ ︸
wave convection

−4π2

λ2︸ ︷︷ ︸
x -diffusion

)
W (y) = 0, (7)

subject to

W (0) = W (2) = 1. (8)

A prime indicates differentiation with respect to y and use has been made of the Poiseuille solution, u = 3y(1−y/2).

Three parameters appear in Eq. (7): the Reynolds number R = U∗
b h∗/ν∗, the scaled phase speed U = U∗/U∗

b , and

the scaled wavelength λ = λ∗/h∗.

3 Analytical solution in terms of the parabolic cylinder function

By introducing the wall-normal coordinate ŷ = φ(1 − y), where φ =
√

2[3π R/(λi)]1/4, and the spanwise

velocity Ŵ
(
ŷ
)

= W(y), Eq. (7) simplifies to

Ŵ ′′(ŷ
)
+
(

a + 1

2
− ŷ2

4

)
Ŵ
(
ŷ
)

= 0, (9)

where a =
√

iπ/(3λR)[iR(U − 3/2) − 2π/λ] − 1/2. The boundary conditions (8) become Ŵ (±φ) = 1. Equa-

tion (9) is in the form of Eq. (3.5.11) on p. 96 in Bender and Orszag [38] and therefore the solution of Eq. (5) can

be written in terms of two linearly independent PCFs:

w(x, y, t; R, U, λ) = R

{
Da[φ(1 − y)] + Da[φ(y − 1)]

Da(φ) + Da(−φ)
e2π i(x−t)

}
. (10)

While this expression provides an analytical solution for w, its practical value for determining the actual spanwise

flow velocity is somewhat limited. This is because, to the best of our knowledge, there does not exist yet a robust

numerical code which solves for the PCF in the entire complex plane. Temme [39] offers a complete list of

journal articles on the numerical algorithms, outlining the restrictions on the complex argument. He states that

“...constructing reliable software for all possible combinations of the complex parameters is a challenging problem”.

Mathematica solves the complex-to-complex PCF, but it produces erroneous results for spanwise viscous layers

extending to the whole channel width. As a full computational implementation of a numerical code for complex-

to-complex PCF lies outside of the scope of the present work, numerical and asymptotic methods will now be

employed to study the flow.
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4 Numerical results

Flow profiles are first obtained by solving Eq. (7) numerically through a second-order finite-difference scheme with

uniform mesh size along y [40]. We have chosen an implicit scheme to avoid stiffness-related problems. As the

flow is symmetric with respect to the centreline, only half of the domain along y needs to be considered, and the

boundary conditions become W (0) = 1, W ′(1) = 0. In the following figures, the numerical profiles are shown for

eight ξ values, equally spaced across one oscillation period.

Increasing the phase speed U renders the spanwise viscous region thinner, as shown in Fig. 3 for R = 1, λ =
1, U = 10 (left), and U = 100 (right). This behaviour is the same as for λ/R ≪ 1, where the boundary-layer

thickness becomes thinner as the frequency increases (refer to contour plot in Quadrio and Ricco [32, Fig. 8]). In

the cases shown in Fig. 3, all four terms in Eq. (4) play a role, as the unsteadiness and the transport due to the

Poiseuille flow are balanced by viscous diffusion along x and y. These profiles are very similar to the classical

Stokes problem profiles. Note that, for λ = R = 1 and U = 10 (and smaller), a boundary layer does not exist as

viscous effects diffuse across the whole wall-normal extent of the channel.

Flows for R = 1 with U = 0 and wavelengths λ = 0.01, 0.1, 1 are shown in Fig. 4(left). A boundary layer

emerges as λ decreases, and the flow is self-similar as the wall-normal coordinate is rescaled by the streamwise

wavelength, ȳ = y/λ = O(1), in the limit λ ≪ 1. The rescaled profiles show excellent agreement, especially

near the wall when the wall velocity is large. By introducing ȳ in (7) and taking the limit λ ≪ 1, the solution to

Eq. (7) is w = R{exp[2π(iξ − y/λ)]}, as clearly shown in Fig. 4(left). This asymptotic scaling is confirmed by

the analysis given in Sect. 5. No convective transport is at work: the physical balance is between the wall-normal

and the streamwise viscous diffusion. As the wavelength increases to λ = 10, Fig. 4(right) shows that the velocity

tends to a constant value along y.
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0.6

0.8

1

Fig. 3 Instantaneous profiles of w(y) for U = 10 (left) and U = 100 (right), R = 1, λ = 1. Profiles are shown uniformly spaced

across one wall oscillation
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Fig. 4 Left: Profiles of w(ȳ), where ȳ = y/λ, for R = 1, U = 0, λ = 0.01 (solid line), λ = 0.1 (circles), λ = 1 (dashed line). Right:

Profiles of w(y) for R = 1, U = 0, λ = 10
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Fig. 5 Profiles of w(y) for λ = 100 (left) and λ = 1000 (right), R = 1000, U = 0
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U = 1.25

Fig. 6 Profiles of w(y) for λ = 50, R = 1000 and U = 0.5 (top left), U = 0.75 (top right), U = 1.125 (bottom left), and U = 1.25

(bottom right). The horizontal solid lines indicate the location of the turning point y0, while the dashed line
(
at y − y0 = ±(λ/R)1/3

)

and dashed-dotted line
(
at y − y0 = ±(λ/R)1/5

)
mark the boundaries of the matching region studied in Sect. 6.1

Figure 5 presents profiles for steady-wave flows at high Reynolds number R = 1000 and with long wavelength

(left: λ = 100 and right: λ = 1000). The streamwise viscous diffusion effects, represented by the last term in (7),

are negligible. Like the flows at order-one Reynolds number shown in Fig. 3, the spanwise flow occupies the entire

channel, with the viscous region becoming thinner as λ/R decreases. For the case with λ = 1000 (Fig. 5, right),

the spanwise velocity is finite at the centreline.

Profiles for λ ≪ R resemble the classical Stokes solution for high positive U and for negative U . Trends sim-

ilar to the exponentially decaying profiles shown in Fig. 4 are found when λ ≪ 1. However, the profiles vary

significantly from the classical Stokes solution when U ≈ 1 or smaller (and positive) and λ is sufficiently larger

than 1 and smaller than R. Figure 6 shows four sets of profiles for λ = 50, R = 1000, and 0.5 ≤ U ≤ 1.25. The

trends are similar to the profiles of the Stokes layer only in the upper portion of the viscous layer, while at lower

locations the trends show oscillatory behaviour which is distinctly different from the Stokes layer. For example,

profiles for U = 0.75 with w = 0.7 at y = 0 may decay and change their curvature as y increases without crossing
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the w = 0 line for the whole channel extent. The spanwise velocity may therefore be positive along the whole

channel, which is never the case for the Stokes layer.

Solving the governing equation (7) represents a simple numerical exercise. However, it is clear from the numer-

ical results presented that restricting the analysis to a computational endeavour severely limits the understanding of

the physical problem. Therefore, asymptotic methods, i.e. the boundary-layer theory in Sect. 5, the WKBJ theory

in Sect. 6, and the Langer theory in Sect. 7, are employed. These analyses are useful because approximate ana-

lytical solutions of (7) are obtained and because insight on the physics is gained, which cannot be revealed either

through the full numerical solution or the PCF analytical expression (10). In particular, the asymptotic approach

quantifies the thickness of the spanwise viscous layer, highlighting the physical balance very near the wall, and

explains the occurrence of the wiggly behaviour for wave speeds comparable with the bulk velocity, shown in Fig. 6

(refer to Sect. 6). The theoretical analysis precisely identifies the parameter range for this turning-point regime,

i.e. R−1 ≪ λ ≪ R and 0 ≤ U ≤ 3/2, and quantifies the thickness of the thin turning-point layer and of the other two

order-one regions which confine this layer. The physical balances in these three layers are revealed, which explains

the mathematical forms of their asymptotic solutions. The solid lines in Fig. 6, located at y = 1 −
√

1 − 2U/3,

indicate the turning-point location. It will be further shown that the asymptotic analysis is also useful for the design

of the proposed micromixer based on the travelling waves. The boundary-layer theory indeed identifies the cases

where the spanwise flow is confined to a very thin wall-bounded layer, which are clearly not candidates as efficient

mixers because the bulk flow, where the mixing is required, is largely unaffected by the wall motion.

5 Boundary-layer theory

To expedite the analysis, the asymptotic parameter ε ≡ λ/R is defined, which can be written as

ε = λ∗

h∗

/
U∗

b h∗

ν∗ = ν∗ A∗

h∗2

/
U∗

b A∗

λ∗ .

As also clear from multiplying each term of Eq. (5) by A∗U∗/λ∗, ε represents the ratio between the wall-normal

viscous effects and the convection effects due to the transport of the Poiseuille flow on the streamwise gradient of

the spanwise flow. When U = O(1) these convection effects are also comparable to the unsteadiness due to the

wave motion. In terms of ε, Eq. (7) is written as

εW ′′(y) +
(

3π iy2 − 6π iy + 2π iU − 4π2ε

λ2

)
W(y) = 0. (11)

The cases for ε ≪ 1 are studied in Sect. 5.1 and the cases for ε = O(1) and ε ≫ 1 are studied in Sect. 5.2.

5.1 The small-ε regime: λ ≪ R

In the limit ε ≪ 1, the solution of Eq. (11) is W = 0, which satisfies the boundary condition W ′(1) = 0, but not

the wall condition W (0) = 1. A boundary layer therefore exists in the proximity of the wall, where the solution

varies rapidly. When y ≪ 1, the coordinate y is rescaled as Y = y/δ = O(1), where δ = εβ is the boundary-layer

thickness and β is an unknown positive number. Within the boundary layer, Eq. (11) becomes

W
′′
(Y ) +

(
3π iY 2ε4β−1 − 6π iY ε3β−1 + 2π iUε2β−1 − 4π

λ2
ε2β

)
W(Y ) = 0, (12)

where W (Y ) = W (y). There are two possible distinguished limits in (12): β = 1/2 and β = 1/3. This scenario is

typically encountered in nested boundary-layer problems (refer to Bender and Orszag [38, example 6 on p. 453]),

where an inner-inner boundary layer must exist on one side of the domain because the inner boundary layer does not
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satisfy the boundary condition. However, only one boundary layer exists in our case and the two β values correspond

to distinguished flow regimes which match asymptotically in the parameter space (λ, R). Equation (12) is written as

β = 1/2 : W
′′
(Y ) +

(
3π iεY 2 − 6π iε1/2Y + 2π iU − 4π2ε

λ2

)
W(Y ) = 0, (13a)

β = 1/3 : W
′′
(Y ) +

(
3π iε1/3Y 2 − 6π iY + 2π iU

ε1/3
− 4π2ε2/3

λ2

)
W(Y ) = 0, (13b)

subject to W (0) = 1 and W (∞) = 0.

The case with β = 1/2 is studied first. The terms in (13a) that are proportional to Y and Y 2 may be neglected

when the y diffusion balances either the convection term due to the wave transport, i.e. U = O(1), or the spanwise

viscous diffusion term, i.e. λR = O(1), or both. Equation (13a) can then be simplified to

W
′′
(Y ) +

(
2π iU − 4π2

λR

)
W(Y ) = 0. (14)

The solution to Eq. (14) is

W(y) = exp

⎡
⎣sgn(U )

√
4π2

λ2
− 2π iU R

λ
y

⎤
⎦, (15)

where the branch cut in the square root is taken as the negative real axis. The convection effects brought about by the

travelling wave are balanced by the viscous effects along the x and y directions, and the boundary-layer thickness

is δ = O(λ) = O
(√

λ/(U R)
)
.

When U ≫ (λR)−1, expression (15) simplifies to

W(y) = exp

[
sgn(U )i3/2

√
2πU R

λ
y

]
= exp

[
(i − 1)

√
ω∗

ν∗ y∗
]
, (16)

which identifies the oscillating-wall regime. The viscous effects along x are negligible. Expression (16), combined

with (6), leads to the solution of the Stokes problem for a flat plate oscillating sinusoidally in time beneath a sta-

tionary fluid. This is because in this high-frequency limit the streamwise-dependent term in the exponent in (6) is

negligible with respect to the unsteady term in (6). The boundary-layer thickness is δ = O
(√

λ/(U R)
)
. This flow

was also studied by McHale et al. [41] for a shear-horizontal shear wave travelling below a stationary fluid as an

idealized model of a quartz crystal microbalance used, among many applications, for in situ monitoring of film

deposition and analysis of polymer coatings.

When U ≪ (λR)−1, expression (15) simplifies to

W(y) = exp

(
−2πy

λ

)
, (17)

which identifies the regime where the x and y viscous diffusion effects balance each other to give a boundary-layer

thickness δ = O(λ) (refer to the numerical solution in Fig. 4(left)). This flow is shown to be steady by rescaling

time by the average time taken by a fluid particle to cover a distance λ∗ along x∗, i.e. t̃ = t∗U∗
b /λ∗. The rescaling is

necessary because the wave speed is now small. It follows that the exponent in (6) is 2π i
(
x − Ut̃

)
, which simplifies

to 2π ix for small U .

In Eq. (13a), the term involving Y 2 is always negligible with respect to the term involving Y . However, if neither

of the other two terms multiplying W (the convective term containing U and the x-diffusion term containing (λR)−1)

is O(1) and at least one balances the term ε1/2Y , there is no term to balance the y viscous diffusion term. This may
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occur when U = O
(√

λ/R
)

and λ = O(R−1/3), when U = O
(√

λ/R
)

and λ ≫ R−1/3, or when U ≪
√

λ/R

and λ = O(R−1/3). When U ≪
√

λ/R and λ ≫ R−1/3, the term proportional to Y alone balances the y viscous

diffusion term, leading to the steady-wave case studied by Viotti et al. [42]. The scaling with β = 1/2 therefore

breaks down because the term proportional to W is always smaller than the wall-normal viscous term and the scaling

with β = 1/3 applies.

The β = 1/3 case is now investigated. The solution to (13b) is written in terms of the Airy function of the first

kind as

W(y) =
{

Ai

[
e−5π i/6

(
2π R

9λ

)1/3(
U + 2π i

λR

)]}−1

Ai

[(
2π iR

9λ

)1/3(
3y − U − 2π i

λR

)]
, (18)

which was found by Quadrio and Ricco [32]. Expression (18) identifies the travelling wave regime with streamwise

viscous diffusion and is valid when U = O((λ/R)1/3) and λ = O(R−1/2), i.e. when the convective transport

due to the waves and the streamwise viscous diffusion balance the Poiseuille flow convective transport and the

wall-normal viscous diffusion. The streamwise viscous diffusion effects, denoted by the last term in (18), may

be neglected when λ ≫ R−1/2, namely when the last term in (13b) is negligibly small. When U ≪ (λ/R)1/3

and λ ≫ R−1/2, the steady-wave regime with no x diffusion effects, studied by Viotti et al. [42], is retained as the

last two terms in the argument of the Airy function in (18) are negligible. The steady-wave regime with streamwise

diffusion is found when U ≪ (λ/R)1/3 and λ = O(R−1/2).

For large U , the asymptotic limit of (18) has been studied by Quadrio and Ricco [32]: the classical solution (16)

to the classical Stokes problem is recovered. Analogously, the thin-layer steady-wave regime solution (17) is found

through the asymptotic expansion of Eq. (18) as λ ≪ R−1/2 and U = O((λR)−1) or smaller. In this limit, the

argument ζ of the Airy function in Eq. (18) is unbounded and

ζ ∼ e−π i/3

(
2π R

9λ

)1/3(
3iy − iU + 2π

λR

)
as |ζ | → ∞. (19)

The following asymptotic formula therefore applies:

Ai(ζ ) ∼ e−2ζ 3/2/3

2
√

πζ 1/4

∞∑

k=0

(−1)kck

(
2ζ 3/2

3

)−k

as |ζ | → ∞, |arg(ζ )| < π, (20)

where ck are given in Abramowitz and Stegun [43, 10.4.59 on p. 448]. By substituting (19) into Eqs. (20) and (18),

one finds

W(y) = exp

{
16iπ3

9λ2 R(2π − iUλR)

{[
1 + 3iyλR(2π − iUλR)

4π2

]3/2

− 1

}}
. (21)

Expression (21) reduces to (17) by expressing the algebraic term in (21) through a Taylor series expansion with

respect to λ ≪ 1, i.e.

[
1 + 3iyλR(2π − iUλR)

4π2

]3/2

= 1 + 9iyλR(2π − iUλR)

8π2
+ O(λ2).

It is thus shown that the asymptotic solutions corresponding to the two distinguished limits of (12), for β = 1/2

and β = 1/3, match asymptotically in the parameter space. Figure 7 shows a schematic of the asymptotic regimes

for λ ≪ R.
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Fig. 7 Schematic of asymptotic regimes for the λ ≪ R case. The quantity C is computed in each case by setting y = 0 in the argument

of the Airy function. The black dot indicates cases for which the WKBJ solution without turning point, Eq. (25), is valid, and the

white dot indicates cases for which the turning-point WKBJ solution for 0 ≤ U ≤ 3/2 and the Langer solution, studied Sects. 6.1

and 7 respectively, are valid. The symbol ∼ denotes a physical balance in this figure and in Fig. 8. The convective effects due to the

Poiseuille flow and the wall wave are denoted by P-convection and U -convection, respectively, while the viscous diffusion effects

along the streamwise and wall-normal directions are indicated by x-diffusion and y-diffusion, respectively. The thick solid line contains

cases with negligible streamwise viscous diffusion, the thick dashed line contains cases with negligible convective effects related to the

Poiseuille flow, and the grey cases are not influenced by convective effects induced by the wall motion. Note that the lines distinguishing

the bottom cases are oblique because the regime for U ≪ (λR)−1 expands as λ becomes smaller

5.2 The order-one-ε and large-ε regimes: λ = O(R) and λ ≫ R

The full PCF solution (10) applies when λ = O(R) = O(1) and U = O(1). When the streamwise diffusion is

negligible, i.e. for λ ≫ 1 and U = O(1), the PCF solution (10) remains valid, albeit with a = i3/2
√

π R/(3λ)(U −
3/2) − 1/2. These two solutions are still valid when U ≪ 1, with a = −

√
iπ/(3λR)[3iR/2 + 2π/λ] − 1/2

when λ = O(1), and a = −i3/2
√

3π R/(4λ) − 1/2 when λ ≫ 1. When the streamwise diffusion effects dominate,

i.e. when λ = O(R) ≪ 1 and U = O(1) or smaller, Eq. (7) simplifies as only the last term in parenthesis is retained.

Hence the solution is given by Eq. (17).

When U ≫ 1 and λ = O(U−1/2), Eq. (7) can be simplified in similar fashion to the λ ≪ R regime. It reduces to

W ′′(y) +
(

2π iU R

λ
− 4π2

λ2

)
W(y) = 0, (22)

whose solution is (15). The two simplified solutions, i.e. (16) and (17), are obtained in the limits λ ≫ U−1/2

and λ ≪ U−1/2, respectively. Figure 8 shows a schematic of the asymptotic regimes for λ = O(R). Note that a

boundary layer exists only when the convection due to the wall motion is negligible (areas enclosed by dashed line),

whereas the viscous effects extend throughout the entire channel when the PCF solutions apply. The trapezoid in

the top right corner of Fig. 8 indicates that the classical Stokes layer occurs when λ ≫ U−1/2, and hence, for every

value of U , there exists a very large λ above which the classical Stokes layer is always recovered.
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Fig. 8 Schematic of asymptotic regimes for λ = O(R), where C = [Da(φ) + Da(−φ)]−1. The same legend of Fig. 7 applies

When λ ≫ R, Eq. (7) simplifies to Eq. (22). The solutions are (15), (16), and (17) when U = O((λR)−1), U ≫
(λR)−1, and U ≪ (λR)−1, respectively. We close this section by pointing out that the boundary-layer analysis

reveals no information on the physics behind the peculiar profiles shown in Fig. 6. This is studied through the WKBJ

theory in Sect. 6.

6 WKBJ theory

An asymptotic solution to (11) is found by the WKBJ physical-optics theory when λ ≪ R (ε ≪ 1). Cases for

which λ = O(R−1) are first considered. The solution is [38]

W (y) = P
1/4
0 (1 − e−ψ )

2P(y)1/4 sinh ψ
exp

[√
i

ε

∫ y

0

√
P
(
y̌
)

d y̌

]
+ P

1/4
0 (eψ − 1)

2P(y)1/4 sinh ψ
exp

[
−
√

i

ε

∫ y

0

√
P
(
y̌
)

d y̌

]
, (23)

where P(y) = −3πy2 + 6πy − 2πU − 4iπ2/(λR), P0 = P(0) = P(2) = −2πU − 4iπ2/λR, and ψ =
√

i/ε
∫ 2

0

√
P
(
y̌
)

d y̌. It is easy to confirm that both conditions of validity discussed by Bender and Orszag [38, pp.

493–494] are verified. As

∫ y

0

√
P
(
y̌
)

d y̌ =
√

3π i

2

[
(1 − y)α(y) +

√
b + (1 − b) ln

[
y − 1 + α(y)√

b − 1

]]
, (24)

where α(y) =
√

y2 − 2y + b and b = 4π i/(3λR) + 2U/3, the solution (23) becomes
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Fig. 9 Profiles of the real (dashed) and imaginary (dotted) components of the WKBJ solution (25) for λ = 1, R = 1 and U = 0 (left),

and λ = 1, R = 1 and U = 10 (right) (ε = 1 in both cases). The solid profiles are the numerical solutions

W (y) = P
1/4
0 (1 − e−ψ )

2P(y)1/4 sinh ψ

[
y − 1 + α(y)√

b − 1

]γ (1−b)

exp
[
α(y)γ (1 − y) − γ

√
b
]

+

P
1/4
0

(
eψ − 1

)

2P(y)1/4 sinh ψ

[ √
b − 1

y − 1 + α(y)

]γ (1−b)

exp
[
α(y)γ (y − 1) + γ

√
b
]
, (25)

where γ =
√

3π Ri3/2/
(

2
√

λ
)

and ψ = γ (1 − b) ln
[(√

b + 1
)
/
(√

b − 1
)]

− 2γ
√

b.

Figure 9 shows the profiles of the real and imaginary parts of W(y) for λ = 1, R = 1 and U = 0 (left) and λ = 1,

R = 1 and U = 10 (right) given by (25). Both the real (dashed) and imaginary (dotted) theoretical profiles are com-

pared to the numerical profiles (thin solid lines), with excellent agreement obtained, although ε = λ/R = 1 in both

cases. The corresponding spanwise velocities w = R
[
W(y) exp (2π iξ)

]
for these cases are shown in Figs. 4(left)

and 3(left), respectively.

6.1 Turning-point solution by matched asymptotic expansion

In Eq. (11), the streamwise diffusion is negligible when the last term in the parenthesis is smaller than all the other

terms. When U = O(1), this occurs when λ ≫ R−1/2. Equation (11) simplifies to

εW ′′(y) − iP(y)W(y) = 0, (26)

where P(y) = −3πy2 +6πy −2πU . In this limit, the WKBJ asymptotic solution (25) is not valid for 0 ≤ U ≤ 3/2

because P(y) = 0 when y = y0 = 1 −
√

1 − 2U/3, which causes the WKBJ solution (25) to become unbounded

there. In this case, a turning point occurs at y = y0. The WKBJ theory reveals that the profiles shown in Fig. 6 belong

to this category and is able to define precisely the parameters for which this behaviour occurs. For 0 < U ≪ 1, the

turning point is located at y0 ∼ U/3. The relationship between y0 and U is shown in Fig. 12(left) of Appendix C.

Following Bender and Orszag [38], a composite WKBJ expansion can be constructed in the half channel

0 ≤ y ≤ 1, i.e.

W(y) = Ww(y) + W0(y) + Wm(y) − W c
0w(y) − W c

0m(y), (27)

where

Wm = am
[
iP(y)

]1/4
exp

[
−
√

i

ε
κ(y)

]
+ bm

[
iP(y)

]1/4
exp

[√
i

ε
κ(y)

]
, (28a)
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W0 = a0Ai

⎧
⎨
⎩

[
iP

′
(y0)

ε

]1/3

(y − y0)

⎫
⎬
⎭ + b0Ai

⎧
⎨
⎩e2iπ/3

[
iP

′
(y0)

ε

]1/3

(y − y0)

⎫
⎬
⎭, (28b)

Ww = aw
[
−iP(y)

]1/4
exp

[
i3/2

√
ε
κ(y)

]
+ bw

[
−iP(y)

]1/4
exp

[
− i3/2

√
ε
κ(y)

]
, (28c)

and the branch cut is chosen so that

κ(y) =

⎧
⎪⎨
⎪⎩

∫ y

y0

√
P
(
y̌
)

d y̌ = 1
2
(y − 1)

√
P(y) +

√
π(3−2U )

2
√

3

{
π
2

− arcsin
[√

3(1−y)√
3−2U

]}
for y > y0,

−
∫ y0

y

√
−P

(
y̌
)

d y̌ = 1
2
(y − 1)

√
−P(y) +

√
π(3−2U )

2
√

3
ln

[
π

√
3−2U√

3π(1−y)−
√

−π P(y)

]
for y < y0.

(29)

The solution Wm(y) in (27) occupies y − y0 > ε1/3 and is bounded above by the centreline, while Ww(y) in (27)

occupies y − y0 < −ε1/3 and is bounded below by the channel wall. The solution W0(y) in (27) is about the turning

point at y = y0. W c
0w(y) is the common part matching the behaviour near the turning point to the WKBJ behaviour

near the wall, and W c
0m(y) is the common part matching the behaviour near the turning point to the WKBJ behaviour

near the centreline. These common parts and W0(y) are derived in Appendix A. As detailed in Appendices B and C,

the constants am, bm, a0, b0, aw, and bw are determined by matching the solutions asymptotically and applying the

boundary conditions W(0) = 1 and W ′(1) = 0.

As shown in Appendix C, the asymptotic solution (27) shows excellent agreement with the numerical solution.

The changing nature of the flow on either side of the turning point can be explained by the changes in the domi-

nant balances in (11). In this parameter range, the dominant behaviour close to the wall is governed by a balance

between the unsteady convection and the wall-normal viscous stresses. Moving away from the wall, the streamwise

Poiseuille-driven convection increases. Between the wall and the turning point, the streamwise Poiseuille-driven

convection remains smaller than the convection resulting from unsteady wall wave forcing. At the turning point, a

constant-viscous-stress balance exists between the streamwise Poiseuille-driven convection and the convection due

to the unsteady wave forcing. Above the turning point the convection due to the Poiseuille flow is more significant

than the contribution due to the wall wave forcing and the y viscous diffusion is present again.

7 Langer theory

An asymptotic approximation which is alternative to the WKBJ turning-point solution can be constructed via the

Langer transformation: η = η(y) and v =
√

η′(y)W(y) [44]. This is uniformly valid between the walls and the

centreline. Equation (26) can be written as

d2v

dη2
− iP

ε(η′)2
v = Δv, where Δ = −

3
(
η′′)2

4(η′)4
+ η′′′

2(η′)2
. (30)

For ε ≪ 1 and Δ = O(1), the approximate solution to (30) can be calculated from the related equation

d2v

dη2
− iP

ε(η′)2
v ∼ 0.

Following Langer [36,37], we choose iP/
(
η′)2 = η, and hence, upon integration,

η(y) =

⎧
⎪⎨
⎪⎩

[
3
2

√
iκ(y)

]2/3
for y > y0,

−
[
− 3

2

√
iκ(y)

]2/3
for y < y0,
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Fig. 10 Comparison between the real (thick dashed lines) and imaginary (thick dotted lines) components of the Langer solution (31)

with the numerical solutions (thin solid lines) for λ = 50, R = 1000 and U = 0.5 (left, as Fig. 6(top left) and case 2 in Sect. 6.1),

and U = 1.25 (right, as Fig. 6 (bottom right) and case 3 in Sect. 6.1). ε = 0.05 in both cases

where κ(y) is given by (29). A uniform asymptotic approximation to W(y) is given by

W(y) =
[
− iη(y)

P(y)

]1/4{
aLAi

[
ε−1/3η(y)

]
+ bLBi

[
ε−1/3η(y)

]}
, (31)

where

{aL, bL} =
[

iP(0)

η(0)

]1/4 {
Bi′(η1),−Ai′(η1)

}

Ai(η0)Bi′(η1) − Ai′(η1)Bi(η0)
(32)

and η0 = ε−1/3η(0) and η1 = ε−1/3η(1). The real and imaginary parts of the Langer solution (31), shown in Fig. 10

for two cases investigated in Sect. 6.1, show excellent agreement with the numerical profiles.

8 Application to flow mixing

It is our hope that our theoretical results will spur experimental research for which the fluid-structure interac-

tion driven by shear-horizontal waves is important. In this section, we put forward ideas for their possible future

applications.

– Active mixing of laminar flows by surface acoustic waves. Rayleigh waves, i.e. wall-normal displacement

streamwise-travelling acoustic waves, have been utilized for microfluidic mixing. Sritharan et al. [1] and Tseng

et al. [45] experimentally verified that Rayleigh waves can mix cofluent streams with very different passive scalar

concentrations. However, in liquids these waves suffer from severe energy dissipation due to the compression

waves engendered by the wall-normal displacement (leaky-wave phenomenon). Also, although the induced

small-scale secondary recirculatory motion is beneficial for mixing, it may interfere with the smoothness of the

streamwise flow and create additional pressure gradients and therefore additional losses. We instead propose

to use shear-horizontal waves to mix the cofluent streams studied by Sritharan et al. [1] and Tseng et al. [45],

which, to the best of our knowledge, have never been employed in microfluidic mixing. A schematic of the

microfluidic SAW mixer is shown in Fig. 11(left).

The main advantages over the Rayleigh waves would be (i) less energy dissipation (higher efficiency) because

the shear-horizontal waves do not suffer from acoustic streaming energy loss due to the absence of wall-normal

motion, as thoroughly discussed by Lange et al. [13] and Rocha et al. [46], which implies (ii) mixing along

longer streamwise distances [46]. Furthermore, (iii) as the mixing occurs through the spanwise velocity, the
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Fig. 11 Schematic drawings of mixers of two microfluidic flows at different passive scalar concentrations. Left: forcing by a shear-

horizontal surface acoustic wave. Right: forcing by an electro-osmotic wall wave

streamwise flow remains smooth and no additional induced pressure gradients must be accounted for. A fourth

advantage is that (iv) the spanwise waves would be better mixers than two-dimensional Rayleigh waves given

the concentration distribution at the inlet, shown in Fig. 11(left), which is uniform along the wall-normal direc-

tion, but strongly varying along the spanwise direction. Although the streamlines of the streamwise flow are

unchanged when the SAWs are implemented, the mixing is required primarily along the spanwise direction

where the concentration variations are most intense.

The passive scalar equation to be solved is

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= 1

Pe

(
∂2θ

∂x2
+ ∂2θ

∂y2
+ ∂2θ

∂z2

)
, (33)

where θ is the passive scalar concentration (mass or temperature, for example), Pe = U∗
b h∗/α∗

p is the Peclet num-

ber, and α∗
p is the diffusion coefficient for mass transfer and the thermal diffusivity for heat transfer. The spanwise

waves w(x, y, z, t) would act, through the boxed term in (33), on the spanwise gradient of θ , which would be most

intense at the upstream channel location, where the two cofluent streams start interacting. The Reynolds numbers

in the experiments of Sritharan et al. [1] and Tseng et al. [45] are in the range 10−2−1 and the forcing wavelengths

are comparable or smaller than the channel height, which leads to ε = λ/R in the range 1–100. This corresponds

to the order-one-ε and large-ε regimes with U belonging to any columns of Fig. 8 because a wide range of wave

speeds can be generated by wave interference, as proved by the standing- wave study by Ding et al. [8].

We finally note that the boundary-layer analysis of Sect. 5 is also here useful because it allows identifying the

regimes where the spanwise flow is confined very near the wall, which are bound not to be efficient mixers as

the mixing is required across the whole channel height. The turning-point regimes, for which the wave speed is

comparable with the bulk velocity, could instead qualify as candidates for good mixing because the flow may

extend along the channel height (refer to Fig. 6).

– Active mixing of laminar flows by electro-osmotic waves.

The travelling wave flow produced by (1) could also be generated by electro-osmotic waves and used for

microfluidic flow mixing, as shown in Fig. 11(right). To the best of our knowledge, these waves have never

been created through electro-osmosis, but proper design of an unsteady and spatially inhomogeneous electric

field could achieve this purpose. They would be an unsteady and streamwise-modulated version of the waves

suggested by Ajdari [18], a streamwise-modulated variant of the oscillatory flow studied numerically by Dutta

and Beskok [47], or an optimized variant of the micromixer proposed by Oddy et al. [23], where the wall forcing

would be spanwise and streamwise-modulated instead of simply oscillatory and spatially uniform. Extending

the analyses of Dutta and Beskok [47] and Meisel and Ehrhard [25], the governing equation for the spanwise

velocity with electro-osmotic effects included is

∂w∗

∂t∗
+ u∗ ∂w∗

∂x∗ = ν∗
(

∂2w∗

∂x∗2
+ ∂2w∗

∂y∗2

)
− ε∗ζ ∗E∗

z (x∗, t∗)

ℓ∗2
d ρ∗ e−y∗/ℓ∗

d , (34)
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subject to the no-slip boundary condition at the wall and to the zero-gradient condition at the centre-

line (we only consider half channel for simplicity). Here ℓ∗
d is the thickness of the Debye–Hückel layer,

E∗
z = E∗

z,0R
[
e2π i(x∗−U∗t∗)/λ∗]

is the spanwise electric field, ε∗ is the permittivity, and ζ ∗ is the zeta potential

(we have set the ionic energy parameter equal to unity, refer to Dutta and Beskok [47, p. 5098], and for simplicity

assumed an exponentially decaying potential as in Meisel and Ehrhard [25] rather than more complex potential

functions as in Afonso et al. [48] and Wang et al. [49]). The details of the formulation for the Stokes layer case,

i.e. for u∗ = 0 and E∗
z = E∗

z,0R
(
eiω∗t∗), are found in Dutta and Beskok [47].

The above problem can be conveniently simplified under the assumption that Debye–Hückel layer ℓ∗
d is much

thinner than the channel height and the viscous layers studied in Sect. 5. As also discussed by Qiao and Aluru [50],

this hypothesis is amply verified as ℓ∗
d is very small, i.e. of the order of 100 nm [47,51], therefore about three

orders of magnitude smaller than the channel height and two orders smaller than the viscous layers generated by

the travelling waves. This means that the electric potential is confined in this very thin near-wall Debye–Hückel

layer, while the bulk flow is electrically neutral and driven underneath by the electro-osmotic motion of the

Debye–Hückel layer. The scaled form of (34) is

∂w

∂t
+ u

U

∂w

∂x
= 1

λRU

∂2w

∂x2
+ λ

RU

∂2w

∂y2
− Πz

Rδ2
d

e−y/δd , (35)

where Πz = ε∗ζ ∗E∗
z λ∗/(μ∗h∗U∗) = O(1), μ∗ is the dynamic viscosity of the fluid, δd = ℓ∗

d/h∗ ≪ 1, and

λ, U, R = O(1). Note that here w = w∗/U∗
b as A∗ cannot be used for scaling like in Sect. 2 because it is

not defined. It is found in the following through asymptotic matching. By defining the Debye–Hückel-layer

coordinate Yd = y/δd and velocity Wd = w, the Debye–Hückel-layer equation is found at leading order

∂2Wd

∂Y 2
d

= UΠz

λ
e−Yd , (36)

whose solution is

Wd(x, Yd, t) = UΠz

λ

(
e−Yd − 1

)
, (37)

obtained by use of the boundary conditions Wd(0) = 0 and W ′
d(∞) = 0. The Helmholtz–Smoluchowski

velocity is obtained as follows:

Whs(x, t) = lim
Yd→∞

Wd(x, Yd, t) = −UΠz

λ
. (38)

In dimensional form, (38) becomes W ∗
hs = −

(
ε∗ζ ∗E∗

z,0/μ
∗)

R
[
e2π i(x∗−U∗t∗)/λ∗]

. This is the velocity that

drives the bulk electrically neutral flow which we have studied in the previous sections. We can now quantify

the amplitude of the wall travelling waves defined in (3), i.e. A∗ = −ε∗ζ ∗E∗
z,0/μ

∗. In summary, the bulk

spanwise flow, which is relevant for mixing, is thus described by Eq. (4) and driven by the unsteady and

streamwise-modulated Helmholtz–Smoluchowski velocity Whs in (38), while the spanwise velocity in the very

thin Debye–Hückel layer is brought to zero at the wall through the no-slip condition. The composite solution

is wc(x, y, t) = w(x, y, t) + Wd(x, Yd, t) − Whs(x, t).

As for the SAW mixer, the passive scalar Eq. (33) is to be solved. Similar electro-osmotic microfluidic mixers

have been studied by Sasaki et al. [52] and Huang et al. [53]. Sasaki et al. [52] employed meandering electrodes

to mix two microstreams and stress the importance of obtaining analytical results for the fluid flow in order to

optimize the mixing performance, while Huang et al. [53] generated in-plane microvortices to prove that up to

30-fold mixing enhancement can be achieved compared to mixing due to diffusion only. The spanwise spatial
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pattern displayed in Fig. 11(right) can be achieved by utilizing thin strips of different glass coatings and spatially

modulated electric fields [18,20].

Typical frequencies of electro-osmosis actuators are of the order of 10 Hz [23,53] and the streamwise length of

the microelectrode arrays, which define the forcing wavelength, can be in the range of 100–500 µm. The flow

parameters therefore correspond to ratios ε = λ/R in the range of 0.1–1 and to U of order unity. The small-ε

and order-one-ε regimes characterize these flows. The turning-point WKBJ analysis and the Langer analysis

are thus relevant for these flow regimes, where the wave speeds are positive and comparable with the bulk

velocity. The streamwise wall-shear stress would play a crucial role in the spanwise flow dynamics and thus for

the mixing performance. The design proposed in Fig. 11(right) would generate a square streamwise-travelling

wave of spanwise velocity, a micro-scale analogous version of the pipe-flow wave employed by Auteri et al. [28].

As explained in Sect. 9, thanks to the linearity of the problem, Fourier decomposition will allow the use of our

sinusoidal-wave results to construct the base flow for this mixing problem.

As mentioned in the Introduction, the shear-horizontal waves have also been used for turbulent drag reduction. For

this application, the phase speeds span a wide range of values from null to several times the bulk streamwise velocity.

It therefore follows that the regime with ε = λ/R ≪ 1 properly describes these flows. It also occurs that λ ≫ R−1/2

and therefore the streamwise viscous diffusion due to the waves is negligible. We reiterate that, in fully developed

turbulent channel flows, the laminar flow solutions may only be representative of the spanwise-averaged velocity

profile and only under strict conditions of the wave parameters, as amply discussed in Quadrio and Ricco [32]. It

is interesting to note that the drag-increase regime discovered by Quadrio et al. [31] for a specific range of positive

phase speeds is included within the range for which the turning-point regime occurs. Further investigation is also

required to generalize the stability analyses for the classical Stokes layer [54,55] to the travelling wave case.

9 Summary

Channel flows with spanwise wall forcing consisting of in-phase sinusoidal travelling waves of spanwise wall veloc-

ity have been investigated. A novel three-dimensional time-dependent solution of the incompressible Navier–Stokes

equations is constructed, with the solution represented as a linear combination of complex-to-complex parabolic

cylinder functions. As reliable numerical solutions of the complex-to-complex parabolic cylinder function are

currently unavailable, asymptotic solution methods have been employed to investigate flow variations due to the

Reynolds number R, the scaled phase speed U , and the scaled wavelength λ. Only sinusoidal shear-horizontal wall

forcing has been considered. However, flows produced by more general wall forcing can be expressed by a linear

combination of our solutions with each term multiplied by its Fourier coefficient.

Asymptotic methods, i.e. the boundary-layer and the WKBJ theories, have been utilized to study the flow. The

underlying flow physics, revealed by the dominant balances in the governing equation, is gained by using these

asymptotic theories and cannot be obtained through the exact analytical solution (10) or the numerical solutions

computed in Sect. 4. While the boundary-layer method and the WKBJ approach both produce excellent approxi-

mations to the flow, there are particular advantages for each method. The simplicity of the boundary-layer solutions

compared to the WKBJ solution is noticeable, aided by the outer solutions being identically zero. The boundary-

layer method readily enables the determination of the boundary-layer thickness, which is not available if the WKBJ

method is employed. Furthermore, the link between the different physical effects is elucidated better utilizing the

boundary-layer approach. There are also advantages of the WKBJ approach over the boundary-layer method. With-

out further scaling (introducing a second boundary layer close to y = 2), the WKBJ method readily generates

solutions which are valid across the full channel.

The WKBJ solution also identifies the turning-point behaviour for 0 ≤ U ≤ 3/2, R−1/2 ≪ λ ≪ R, which is not

explained by the boundary-layer method. As the standard WKBJ solution (25) is unbounded near the turning point,

solutions have been found by a WKBJ composite expansion and the Langer method. While the Langer solution is

simpler, the composite WKBJ expansion has the benefits of explicitly determining the turning-point location and of

123



P. Ricco, P. D. Hicks

quantifying the thickness of this thin layer. This is important because the physics changes there. The WKBJ theory

shows that, when the streamwise diffusion effects are negligible, in the turning-point layer the Poiseuille convection

and the convection due to the waves cancel out so that the wall-normal viscous stresses are constant. The high

accuracy of the asymptotic solutions is quantified by comparing them with the numerical profiles in Appendix D.

We have finally presented ideas on how to generate the travelling waves for microfluidic flow mixing via surface

acoustic forcing and electro-osmotic actuation. In the latter case, matched asymptotic expansion has been useful to

obtain the Helmholtz–Smoluchowski velocity that drives the bulk spanwise flow.
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Appendix A: Common parts in WKBJ turning-point composite expansion

The common part W c
0m(y), of the matched asymptotic expansion of W0(y) and Wm(y), which is valid in ε1/3 <

y − y0 < ε1/5, is given by

W c
0m =

[
iP

′
(y0)(y − y0)

]−1/4

⎧
⎨
⎩am exp

⎡
⎣−2

3

√
iP

′
(y0)

ε
(y − y0)

3/2

⎤
⎦ + bm exp

⎡
⎣2

3

√
iP

′
(y0)

ε
(y − y0)

3/2

⎤
⎦
⎫
⎬
⎭, (39a)

while the common part W c
0w(y) of the matched asymptotic expansion of W0(y) and Ww(y), which is valid

in −ε1/5 < y − y0 < −ε1/3, is given by

W c
0w = e3iπ/4

[
−iP

′
(y0)(y − y0)

]1/4

⎧
⎨
⎩aw exp

⎡
⎣−2

3

√

− iP
′
(y0)

ε
(y − y0)

3/2

⎤
⎦ + bw exp

⎡
⎣2

3

√

− iP
′
(y0)

ε
(y − y0)

3/2

⎤
⎦
⎫
⎬
⎭.

(39b)

Here the branch cuts are chosen so that

(y − y0)
1/4 =

{
(y − y0)

1/4, y > y0,

−(y0 − y)1/4, y < y0,
and (y − y0)

3/2 =
{

(y − y0)
3/2, y > y0,

−(y0 − y)3/2, y < y0.

The solution around the turning point, W0(y), is constructed by employing a new transition layer coordi-

nate ŷ = ε−1/3(y − y0) and by expanding P(y) in (26) about y = y0 to give

P(y) = P(y0) + ε1/3 ŷ P
′
(y0) + ε2/3 ŷ2

2
P

′′
(y0) + · · · . (40)

As P(y0) = 0 and P
′
(y0) > 0 for y0 ∈ [0, 1), in cases where the linear term in (40) is much larger than the quadratic

term, the leading-order behaviour of Eq. (26) satisfies the Airy equation

d2W0

d ŷ2
− iP

′
(y0)ŷW0

(
ŷ
)

= 0,

and hence the solution (28b) is obtained around the turning point. The analysis is not complete until the three

expressions (28a)–(28c) are asymptotically matched in the regions where they overlap. As described in Appendix B,
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linearly independent solutions of the Airy equation, Ai(y) and Ai
(
e2iπ/3 y

)
, are utilized to facilitate the matching

with the outer WKBJ behaviour above and below the turning-point region.

The turning-point behaviour given by (28b) is not valid when the quadratic term in (40) is as large as the linear

term and hence cannot be neglected. This occurs when y0 is close to the centreline because P
′
(1) = 0. As ŷ = O(1),

the linear and the quadratic terms balance when y0 − 1 = O(ε1/3), which is found by use of the definition of P(y).

Inside this region, the quadratic term in the expansion (40) cannot be neglected and, rather than the Airy equation, the

local behaviour is governed by an ordinary differential equation whose solutions are parabolic cylinder functions.

Consistent with our earlier approach of not developing an algorithm for complex-to-complex parabolic cylinder

functions, the particular case with the turning point close to the centreline will not be discussed further.

Appendix B: Matching for WKBJ turning-point composite expansion

When the solution about the turning point is given by (28b), W0 and Wm are matched over a region ε1/3 < y − y0 <

ε1/5, which gives rise to the connection formulae:

am =
a0ε

1/12
[
iP

′
(y0)

]1/6

2
√

π
and bm =

b0ε
1/12

[
iP

′
(y0)

]1/6
eiπ/6

2
√

π
. (41)

Similarly, Ww and W0 are matched over a region −ε1/5 < y − y0 < −ε1/3, which leads to

aw =
a0ε

1/12
[
iP

′
(y0)

]1/6
eiπ/4

2
√

π
and bw =

b0ε
1/12

[
iP

′
(y0)

]1/6
eiπ/12

2
√

π
. (42)

The derivation of the connection formulae is usually given for cases where iP(y) is a strictly real valued function and

is found in Bender and Orszag [38]. The derivation is extended now to the problem of a strictly complex-value iP(y).

For y > y0, the Taylor expansion of P(y) about y = y0 is used in the integral for κ(y), and hence

κ(y) =
∫ y

y0

√
(ỹ − y0)P

′
(y0) + 1

2
(ỹ − y0)

2 P
′′
(y0) d ỹ.

As previously discussed, when y = y0 is sufficiently far from y = 1, the quadratic term can be neglected in

favour of the linear term and hence κ(y) ≈ (2/3)
√

εr3/2, where r = ε−1/3
(
iP ′

0

)1/3
(y − y0) is the variable in the

matching region ε1/3 < y − y0 < ε1/5. Similarly, in this regime [iP(y)]−1/4 = ε−1/12
(
iP ′

0

)−1/6
r−1/4, and hence

for y − y0 → 0+, the WKBJ solution (28c) can be written as

Wm ∼ ε−1/12

(
iP ′

0

)1/6
r1/4

[
am exp

(
−2

3
r3/2

)
+ bm exp

(
2

3
r3/2

)]
. (43)

This solution needs to be matched with the large y behaviour of the local turning-point solution (28b). The

asymptotic approximation to the Airy function is [38]

Ai(z) ∼ 1

2
√

π z1/4
exp

(
−2

3
z3/2

)
for |z| → ∞, and |arg z| < π. (44)
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Consequently for y → ∞, the local solution about the turning point has the form

W0 ∼ a0

2
√

πr1/4
exp

(
−2

3
r3/2

)
+ b0

2
√

πeiπ/6r1/4
exp

(
2

3
r3/2

)
. (45)

Comparing the coefficients of the exponential terms in (43) and (45) gives rise to the connection formula (41),

while similar matching between (28c) and (28b) gives rise to the connection formula (42).

Appendix C: WKBJ turning-point composite solutions

In this Appendix, the possible flow configurations that can arise due to the relationship between the matching

regions, the wall and the centreline, are discussed. As illustrated from left to right in Fig. 12(right), one finds:

– Case 1 (y0 < ε1/5 and y0 > 1 − ε1/5): W0 is valid across the full half channel, with W(y) = W0(y),

a0 = e2π i/3 B1

e2π i/3 A0 B1 − A1 B0
and b0 = − A1

e2π i/3 A0 B1 − A1 B0
,

where A0, B0, A1, and B1 are defined in (46).

– Case 2 (y0 < ε1/5 and y0 < 1 − ε1/3): W0 is valid near the wall and the turning point, while Wm is valid near

the centreline. Here W(y) = Wm(y) + W0(y) − W c
0m(y), with

a0 =
{

A0 + exp

[
−2

√
i

ε
κ(1)

]
B0

}−1

and b0 = e−iπ/6

{
exp

[
2

√
i

ε
κ(1)

]
A0 + B0

}−1

,

where A0 and B0 are defined in (46).
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1

Fig. 12 Left: Turning-point position y0 as a function of U . The dotted lines represent the flows shown in Fig. 6. Right: Flow configurations

for the turning-point solution composite expansion, the channel wall (shaded region) and the channel centreline (thick dashed line)
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– Case 3 (y0 > ε1/3 and y0 > 1 − ε1/5): W0 is valid near the turning point and the centreline, while Ww is valid

near the wall. Here W(y) = Ww(y) + W0(y) − W c
0w(y), with

a0 =
2
√

πe−iπ/4 B1

[
−iP(0)

]1/4

ε1/12
[
iP

′
(y0)

]1/6{
B1 exp

[
i3/2√

ε
κ(0)

]
+ A1 exp

[
iπ
6

− i3/2√
ε
κ(0)

]}

and

b0 =
2
√

πeiπ/12 A1

[
−iP(0)

]1/4

ε1/12
[
iP

′
(y0)

]1/6{
B1 exp

[
i3/2√

ε
κ(0)

]
+ A1 exp

[
iπ
6

− i3/2√
ε
κ(0)

]} ,

where A1 and B1 are defined in (46).

– Case 4 (y0 > ε1/3 and y0 < 1 − ε1/3): W0 is valid near the turning point, while Ww is valid near the wall

and Wm is valid near the centreline. Here W(y) is given by (27), with

a0 =
2
√

π exp

[
2

√
i
ε
κ(1)

][
−iP(0)

]1/4

ε1/12
[
iP

′
(y0)

]1/6
{

exp

[
2

√
i
ε
κ(1) + i3/2√

ε
κ(0) + iπ

4

]
+ exp

[
iπ
4

− i3/2√
ε
κ(0)

]}

and

b0 =
2
√

πe−iπ/6
[
−iP(0)

]1/4

ε1/12
[
iP

′
(y0)

]1/6
{

exp

[
2

√
i
ε
κ(1) + i3/2√

ε
κ(0) + iπ

4

]
+ exp

[
iπ
4

− i3/2√
ε
κ(0)

]} .

Herein

A0 = Ai

{
−ε−1/3

[
iP

′
(y0)

]1/3
y0

}
, B0 = Ai

{
−ε−1/3e2π i/3

[
iP

′
(y0)

]1/3
y0

}
, (46a)

A1 = Ai′
{
ε−1/3

[
iP

′
(y0)

]1/3

(1 − y0)

}
, B1 = Ai′

{
ε−1/3e2π i/3

[
iP

′
(y0)

]1/3

(1 − y0)

}
. (46b)

When y0 < ε1/5 and y0 > ε1/3 the wall is contained within the matching region between Ww(y) and W0(y), and

when y0 < 1 − ε1/3 and y0 > 1 − ε1/5 the centreline is contained in a matching region between Wm(y) and W0(y).

In these parameter regimes, two different configurations are possible because both a WKBJ solution and the local

turning-point solution are valid near one of the boundaries.

Examples of each of the four cases with λ = 50 and R = 1000 are shown in Fig. 13 with case 1 (U = 1.125,

top left), case 2 (U = 0.5, top right), case 3 (U = 1.25, bottom left), and case 4 (U = 1.125, bottom right). In

each case, the breakdown of the real (thin dashed lines) and imaginary (thin dotted lines) components of the WKBJ

solution (25) about the turning point is observed, while the real (thick dashed lines) and imaginary (thick dotted

lines) components of the WKBJ turning point expansion are in much closer agreement with the numerical profiles

(thin solid lines). The parameters chosen in each case match the numerical profiles illustrated in Fig. 6, with case

1 (bottom left), case 2 (top left), case 3 (bottom right), and case 4 (bottom left).

Of the four cases to be described, the agreement between the WKBJ turning-point solution and the numerical

solution is least good in case 1, where the imaginary parts of the composite turning-point solution and the numerical

solution show a relative error of 26% at the turning point. This is because the local turning-point solution W0

in (28b) has to be employed to describe the behaviour close to the wall, the turning point, and near the centreline. It
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Fig. 13 Profiles of W(y) for λ = 50, R = 1000 and case 1 with U = 1.125, (top left), case 2 with U = 0.5 (top right), case 3

with U = 1.25 (bottom left), and case 4 with U = 1.125. The real (thick dashed) and imaginary (thick dotted) components of the

composite expansion are shown, along with the breakdown of the real (thin dashed), and imaginary (thin dotted) components of WKBJ

solution (23) close to the turning point, and the numerical solutions (solid curves). The horizontal solid lines indicate the position of

the turning points y0, while the horizontal dashed lines (at y0 ± (λ/R)1/3) and the horizontal dash-dotted lines (at y0 ± (λ/R)1/5) mark

the boundaries of the matching regions

is expedient to investigate this case even if it is less accurate than the subsequent cases, because the coefficients (46)

are also present in the more complicated expansions. For cases 2, 3, and 4, the composite expansions are in excellent

agreement with the numerical solutions.

Appendix D: Errors in numerical and asymptotic solutions

In order to assess the relative accuracy of the asymptotic approximations, the error measure

E = max
0≤y≤1

∣∣|W | − |Wnum|
∣∣,

is calculated, where W is the approximate solution generated by each approach and Wnum is the numerical solution

calculated utilizing the method outlined in Sect. 4. Profiles are compared on a uniform mesh with 8000 uniformly

spaced points over the range 0 ≤ y ≤ 1. In addition to determining the errors associated with each asymptotic

method, the error associated with the numerical solution is estimated via a comparison with a second numerical

solution calculated on a grid with a mesh spacing of exactly double that of the first numerical solution. Figure 14(left)

shows the error in the absence of a turning point (U = 10) for the numerical solution (thick solid line), the boundary

layer approximation (dashed line), and the WKBJ approximation (dotted line) for variations of ε.

For the range of values of ε investigated:

– The error in the numerical solution increases as the value of ε decreases. This is because smaller values of ε

produce higher wall-normal velocity gradients close to the channel wall and, as ε decreases, the approximation

of these gradients on a uniform grid becomes less accurate.
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Fig. 14 Left: The error E calculated using the boundary-layer method (dashed line), and the WKBJ approximation (dotted line)

for U = 10. Right: The error E calculating using the turning-point method (case 1, dashed line, case 4, dotted line), and the Langer

method (thin solid line) for U = 1.125. In both figures, the error in numerical solution on two different meshes is shown by the thick

solid line

– For ε � 10−2, the WKBJ method outperforms the boundary-layer approximation. In this region the errors

associated with the two methods decay at comparable rates as the value of ε decreases. The decay of E as ε

decreases is fully expected as ε is the small asymptotic parameter.

– For ε � 10−2, the apparent errors associated with the asymptotic solutions start to increase as the value of ε

decreases. This is because the asymptotic solutions are compared with the numerical solution. The asymptotic

solutions tend to the exact solution as ε → 0, whereas the numerical error increases, as discussed in the first

bullet point.

– For very small ε, the errors associated with the WKBJ method and the boundary-layer method are very similar,

which suggests that the two asymptotic methods are in close agreement both with each other and with the exact

solution. This is to be expected for small ε.

To investigate the relative accuracy of the WKBJ turning-point expansion and the Langer method when a turning

point is present, the error associated with each method is calculated for U = 1.125 (y0 = 0.5) and a range of

values of ε, with the errors shown in Fig. 14(right). In terms of the hierarchy of flow solutions with turning points

illustrated in Fig. 12(right), the solution about the turning point is valid across the full half channel for ε ≫ 2−5

(Sect. 6.1, case 1), while the full five-term composite expansion (27) is valid for ε ≪ 2−3 (Sect. 6.1, case 4). The

limits of validity for case 1 and case 4 are denoted by vertical lines in Fig. 14(right).

– The Langer method outperforms the turning-point expansion (case 4) across a wide range of values of ε. The

decay rate of both methods is similar as the value of ε decreases.

– Throughout the region of common validity (2−5 ≪ ε ≪ 2−3), the error associated with the five-term composite

expansion (case 4) is smaller than that observed with just the turning-point solution (case 1). This is consistent

with the behaviour shown for ε = 0.05 in Sect. 6.1.

– For ε � 10−2, the asymptotic methods are more accurate than the numerical method, as shown in Fig. 14.

– For very small ε, good agreement between the turning point expansion and the Langer solution is obtained as

both tend to the exact solution.

– For ε ≈ 1, the errors associated with the turning point expansion and the Langer method are O(1), and hence

these asymptotic methods are of no use in this regime. This is in marked contrast to the earlier analysis for

U = 10, where the errors associated with the boundary-layer method (E = 4.0 × 10−3) and the WKBJ

approximation (E = 2.4 × 10−4), when ε = 1 indicate that these methods may still be of use.
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