543 research outputs found

    Working with patients and members of the public: informing health economics in child health research

    Get PDF
    This paper considers patient and public involvement (PPI) in health economics research and how this might be facilitated. PPI refers to research carried out ‘with’ or ‘by’ members of the public and is now an important aspect of health research policies internationally. Patients and members of the public can be involved in all stages of the research cycle, from establishing whether the topic is important to influencing details of study design, wording of patient-facing documentation and interpretation and dissemination of findings. PPI has become commonplace in health services research. In the context of clinical trials, it has become imperative, with, for example, patients and members of the public informing the selection of outcome measures and recruitment methods, and qualitative research is frequently steered by PPI input regarding the content of interview topic guides and the interpretation of study findings. It is less common for PPI to be explicitly reported in the economic components of health services research. However, we argue that involvement is no less important in this area. The fundamental rationale for involving people in research is that it promotes democratic principles, research quality and relevance to service users. These arguments equally apply to health economics as to other health research disciplines. Our overarching aim in this paper is to show how health economic research might be informed by PPI. We report our experiences of PPI via case studies in child health, reflect on our learnings, and make suggestions for future research practice

    Assessment of Scientific Payload Carrying Spirulina Onboard Blue Origin’s New Shepard Vehicle

    Get PDF
    The research team at ERAU and UTHSCSA analyzed the effects of suborbital flight stressors and various light conditions (red, white, no light) on the Arthrospira platensis (Spirulina), onboard Blue Origin’s New Shepard vehicle. Commercially available cyanobacterium species were cultivated and closely monitored in mother colonies several months before the suborbital flight mission. The aim of this study was to estimate the biomass production and growth as a potential dietary alternative for prospective human spaceflight\u27s life support system. Spirulina samples were flown in a NanoLab with adjacent avionics supporting the light conditions and sensors to monitor the temperature, relative humidity, and accelerations. The various flight parameters measured in the NanoLab were validated with the flight data gathered by Nanoracks, the flight integrator. Thus, we also assessed the effect of microgravity and different light conditions on the gene expression. Our data indicates that the Spirulina samples onboard the rocket had significant (p \u3c 0.01-0.0001) downregulation of majority of the gene expression

    The Iowa Homemaker vol.11, no.9

    Get PDF
    If Mother Always Does It… By Lydia v. Swanson And So We Have Grapefruit By Louise L’Engle From Cleopatra to Betty Coed… By Ruth Ellen Lovrien Luncheon, Shamrock-Trimmed… By Ida M. Shillin

    Intraspecific Differences in Molecular Stress Responses and Coral Pathobiome Contribute to Mortality Under Bacterial Challenge in \u3ci\u3eAcropora millepora\u3c/i\u3e

    Get PDF
    Disease causes significant coral mortality worldwide; however, factors responsible for intraspecific variation in disease resistance remain unclear. We exposed fragments of eight Acropora millepora colonies (genotypes) to putatively pathogenic bacteria (Vibrio spp.). Genotypes varied from zero to \u3e90% mortality, with bacterial challenge increasing average mortality rates 4-6 fold and shifting the microbiome in favor of stress-associated taxa. Constitutive immunity and subsequent immune and transcriptomic responses to the challenge were more prominent in high-mortality individuals, whereas low-mortality corals remained largely unaffected and maintained expression signatures of a healthier condition (i.e., did not launch a large stress response). Our results suggest that lesions appeared due to changes in the coral pathobiome (multiple bacterial species associated with disease) and general health deterioration after the biotic disturbance, rather than the direct activity of any specific pathogen. If diseases in nature arise because of weaknesses in holobiont physiology, instead of the virulence of any single etiological agent, environmental stressors compromising coral condition might play a larger role in disease outbreaks than is currently thought. To facilitate the diagnosis of compromised individuals, we developed and independently cross-validated a biomarker assay to predict mortality based on genes whose expression in asymptomatic individuals coincides with mortality rates

    Participant recruitment to FiCTION, a primary dental care trial – survey of facilitators and barriers

    Get PDF
    Objective To identify reasons behind a lower than expected participant recruitment rate within the FiCTION trial, a multi-centre paediatric primary dental care randomised controlled trial (RCT). Subjects (materials) and methods An online survey, based on a previously published tool, consisting of both quantitative and qualitative responses, completed by staff in dental practices recruiting to FiCTION. Ratings from quantitative responses were aggregated to give overall scores for factors related to participant recruitment. Qualitative responses were independently grouped into themes. Results Thirty-nine anonymous responses were received. Main facilitators related to the support received from the central research team and importance of the research question. The main barriers related to low child eligibility rates and the integration of trial processes within routine workloads. Conclusions These findings have directed strategies for enhancing participant recruitment at existing practices and informed recruitment of further practices. The results help provide a profile of the features required of practices to successfully screen and recruit participants. Future trials in this setting should consider the level of interest in the research question within practices, and ensure trial processes are as streamlined as possible. Research teams should actively support practices with participant recruitment and maintain enthusiasm among the entire practice team

    Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response

    Get PDF
    Mild cognitive impairment following chemotherapy is one of the most commonly reported post treatment symptoms by breast cancer survivors. This deterioration in cognitive function, commonly referred to as “chemobrain” or “chemofog,” was largely unacknowledged by the medical community until recent years. Although chemobrain has now become the subject of more vigorous exploration, little is known about this specific phenomenon’s psychosocial impact on breast cancer survivors. This research documents in-depth the effects that cognitive impairment has on women’s personal and professional lives, and our data suggest that greater attention needs to be focused on this arena of survivorship. The results are based on an in-depth qualitative study of 74 white and African American breast cancer survivors in California who experience post-treatment side effects. The data reported herein were obtained through the use of focus groups and in-depth interviews. Our data indicate that cognitive impairment can be problematic for survivors, with many asserting that it is their most troublesome post treatment symptom. Survivors report diminished quality of life and daily functioning as a result of chemobrain. Respondents detail a range of coping strategies that they are forced to employ in order to manage their social and professional lives. Chemobrain significantly impairs a proportion of cancer survivors, at great cost to them economically, emotionally, and interpersonally. This suggests that more research needs to be conducted on the psychosocial ramifications of post treatment symptoms in order to inform the efforts of the medical and mental health communities as well as the support networks of survivors. A better and broader understanding of the effects of cognitive impairment both in the medical community and among lay people could pave the way for improved social and psychological services for this population

    Modeling regional aerosol variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns

    Get PDF
    Abstract. The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The extensive meteorological, trace gas, and aerosol measurements collected at surface sites and along aircraft and ship transects during CalNex and CARES were combined with operational monitoring network measurements to create a single dataset that was used to evaluate the one configuration of the model. Simulations were performed that examined the sensitivity of regional variations in aerosol concentrations to anthropogenic emissions and to long-range transport of aerosols into the domain obtained from a global model. The configuration of WRF-Chem used in this study is shown to reproduce the overall synoptic conditions, thermally-driven circulations, and boundary layer structure observed in region that controls the transport and mixing of trace gases and aerosols. However, sub-grid scale variability in the meteorology and emissions as well as uncertainties in the treatment of secondary organic aerosol chemistry likely contribute to errors at a primary surface sampling site located at the edge of the Los Angeles basin. Differences among the sensitivity simulations demonstrate that the aerosol layers over the central valley detected by lidar measurements likely resulted from lofting and recirculation of local anthropogenic emissions along the Sierra Nevada. Reducing the default emissions inventory by 50% led to an overall improvement in many simulated trace gases and black carbon aerosol at most sites and along most aircraft flight paths; however, simulated organic aerosol was closer to observed when there were no adjustments to the primary organic aerosol emissions. The model performance for some aerosol species was not uniform over the region, and we found that sulfate was better simulated over northern California whereas nitrate was better simulated over southern California. While the overall spatial and temporal variability of aerosols and their precursors were simulated reasonably well, we show cases where the local transport of some aerosol plumes were either too slow or too fast, which adversely affects the statistics regarding the differences between observed and simulated quantities. Comparisons with lidar and in-situ measurements indicate that long-range transport of aerosols from the global model was likely too high in the free troposphere even though their concentrations were relatively low. This bias led to an over-prediction in aerosol optical depth by as much as a factor of two that offset the under-predictions of boundary-layer extinction resulting primarily from local emissions. Lowering the boundary conditions of aerosol concentrations by 50% greatly reduced the bias in simulated aerosol optical depth for all regions of California. This study shows that quantifying regional-scale variations in aerosol radiative forcing and determining the relative role of emissions from local and distant sources is challenging during "clean" conditions and that a wide array of measurements are needed to ensure model predictions are correct for the right reasons. In this regard, the combined CalNex and CARES datasets are an ideal testbed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes
    corecore