882 research outputs found

    Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    Get PDF
    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals

    Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements [Discussion paper]

    Get PDF
    Droplets produced in a cloud condensation nucleus chamber as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer and the Particle Analysis by Laser Mass Spectrometry instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (ammonium sulfate) but not the other (polystyrene latex spheres). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from atmospheric measurements using this technique indicate that aerosol particles often activate predominantly as a function of particle size. Chemical composition is not irrelevant, however, and we observed enhancement of sulfate in droplet residuals using single particle analysis

    Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction

    Get PDF
    This paper describes and evaluates a new framework for modeling kinetic gas-particle partitioning of secondary organic aerosol (SOA) that takes into account diffusion and chemical reaction within the particle phase. The framework uses a combination of (a) an analytical quasi-steady-state treatment for the diffusion–reaction process within the particle phase for fast-reacting organic solutes, and (b) a two-film theory approach for slow- and nonreacting solutes. The framework is amenable for use in regional and global atmospheric models, although it currently awaits specification of the various gas- and particle-phase chemistries and the related physicochemical properties that are important for SOA formation. Here, the new framework is implemented in the computationally efficient Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to investigate the competitive growth dynamics of the Aitken and accumulation mode particles. Results show that the timescale of SOA partitioning and the associated size distribution dynamics depend on the complex interplay between organic solute volatility, particle-phase bulk diffusivity, and particle-phase reactivity (as exemplified by a pseudo-first-order reaction rate constant), each of which can vary over several orders of magnitude. In general, the timescale of SOA partitioning increases with increase in volatility and decrease in bulk diffusivity and rate constant. At the same time, the shape of the aerosol size distribution displays appreciable narrowing with decrease in volatility and bulk diffusivity and increase in rate constant. A proper representation of these physicochemical processes and parameters is needed in the next generation models to reliably predict not only the total SOA mass, but also its composition- and number-diameter distributions, all of which together determine the overall optical and cloud-nucleating properties

    Working with patients and members of the public: informing health economics in child health research

    Get PDF
    This paper considers patient and public involvement (PPI) in health economics research and how this might be facilitated. PPI refers to research carried out ‘with’ or ‘by’ members of the public and is now an important aspect of health research policies internationally. Patients and members of the public can be involved in all stages of the research cycle, from establishing whether the topic is important to influencing details of study design, wording of patient-facing documentation and interpretation and dissemination of findings. PPI has become commonplace in health services research. In the context of clinical trials, it has become imperative, with, for example, patients and members of the public informing the selection of outcome measures and recruitment methods, and qualitative research is frequently steered by PPI input regarding the content of interview topic guides and the interpretation of study findings. It is less common for PPI to be explicitly reported in the economic components of health services research. However, we argue that involvement is no less important in this area. The fundamental rationale for involving people in research is that it promotes democratic principles, research quality and relevance to service users. These arguments equally apply to health economics as to other health research disciplines. Our overarching aim in this paper is to show how health economic research might be informed by PPI. We report our experiences of PPI via case studies in child health, reflect on our learnings, and make suggestions for future research practice

    Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    Get PDF
    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.Pacific Northwest National Laboratory (U.S.) (Aerosol Climate Initiative)Universitat Frankfurt am Mai

    Tomboys and girly-girls: embodied femininities in primary schools

    Get PDF
    This paper is about how nine to eleven year old children, particularly girls, co-construct tomboy and girly-girl identities as oppositional positions. The paper sits within a theoretical framework in which I understand individual and collective masculinities and femininities as ways of ‘doing man/woman’ or ‘doing boy/girl’ that are constructed within local communities of masculinity and femininity practice. Empirical data come from a one-year study of tomboy identities within two London primary schools. The paper explores the contrasting identities of tomboy and girly-girl, how they are constructed by the children, and how this changes as they approach puberty. The findings suggest that the oppositional construction of these identities makes it harder for girls to take up more flexible femininities, though it is possible to switch between tomboy and girly-girl identities at different times and places

    Who the hell was that? Stories, bodies and actions in the world

    Get PDF
    This article explores a two-way relationship between stories and the experiential actions of bodies in the world. Through an autoethnographic approach, the article presents a series of interlinked story fragments in an effort to show and evoke a feel for the ways in which stories, bodies, and actions influence and shape each other over time. It offers some reflections on the experiences the stories portray from the perspective of a social constructionist conception of narrative theory and suggest that while stories exert a powerful influence on the actions of our bodies, our bodies intrude on or ‘talk back’ to this process because bodies have an existence beyond stories

    Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene

    Get PDF
    The yield of particle mass in secondary organic aerosol (SOA) formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25°C, 40% RH, dry (NH<sub>4</sub>)SO<sub>4</sub> seed particles, and excess 1-butanol. The organic particle loading was independently measured by an aerosol mass spectrometer and a scanning mobility particle sizer, and the two measurements agreed well. The observations showed that SOA formation occurred for even the lowest reacted α-pinene concentration of 0.3 ppbv. The particle mass yield was 0.09 at 0.15 μg m<sup>−3</sup>, increasing to 0.27 at 40 μg m<sup>−3</sup>. Compared to some results reported in the literature, the yields were 80 to 100% larger for loadings above 2 μg m<sup>−3</sup>. At lower loadings, the yields had an offset of approximately +0.07 from those reported in the literature. To as low as 0.15 μm<sup>−3</sup>, the yield curve had no inflection point toward null yield, implying the formation of one or several products having vapor pressures below this value. These observations of increased yields, especially for low loadings, are potentially important for accurate prediction by chemical transport models of organic particle concentrations in the ambient atmosphere

    Abrupt Change of Josephson Plasma Frequency at the Phase Boundary of the Bragg Glass in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report the first detailed and quantitative study of the Josephson coupling energy in the vortex liquid, Bragg glass and vortex glass phases of Bi_2Sr_2CaCu_2O_{8+\delta} by the Josephson plasma resonance. The measurements revealed distinct features in the T- and H-dependencies of the plasma frequency ωpl\omega_{pl} for each of these three vortex phases. When going across either the Bragg-to-vortex glass or the Bragg-to-liquid transition line, ωpl\omega_{pl} shows a dramatic change. We provide a quantitative discussion on the properties of these phase transitions, including the first order nature of the Bragg-to-vortex glass transition.Comment: 5pages, 4figure

    Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene

    Get PDF
    The cloud condensation nuclei (CCN) properties of ammonium sulfate particles mixed with organic material condensed during the hydroxyl-radical-initiated photooxidation of isoprene (C<sub>5</sub>H<sub>8</sub>) were investigated in the continuous-flow Harvard Environmental Chamber. CCN activation curves were measured for organic particle mass concentrations of 0.5 to 10.0 μg m<sup>−3</sup>, NO<sub>x</sub> concentrations from under 0.4 ppbv up to 38 ppbv, particle mobility diameters from 70 to 150 nm, and thermodenuder temperatures from 25 to 100 °C. At 25 °C, the observed CCN activation curves were accurately described by a Köhler model having two internally mixed components, namely ammonium sulfate and secondary organic material. The modeled physicochemical parameters of the organic material were equivalent to an effective hygroscopicity parameter κ<sub>ORG</sub> of 0.10±0.03, regardless of the C<sub>5</sub>H<sub>8</sub>:NO<sub>x</sub> concentration ratio for the span of >200:0.4 to 50:38 (ppbv:ppbv). The volatilization curves (i.e., plots of the residual organic volume fraction against temperature) were also similar for the span of investigated C<sub>5</sub>H<sub>8</sub>:NO<sub>x</sub> ratios, suggesting a broad similarity of particle chemical composition. This suggestion was supported by limited variance at 25 °C among the particle mass spectra. For example, the signal intensity at <i>m/z</i> 44 (which can result from the fragmentation of oxidized molecules believed to affect hygroscopicity and CCN properties) varied weakly from 6 to 9% across the range of investigated conditions. In contradistinction to the results for 25 °C, conditioning up to 100 °C in the thermodenuder significantly reduced CCN activity. The altered CCN activity might be explained by chemical reactions (e.g., decomposition or oligomerization) of the secondary organic material at elevated temperatures. The study's results at 25 °C, in conjunction with the results of other chamber and field studies for a diverse range of conditions, suggest that a value of 0.10±0.05 for κ<sub>ORG</sub> is representative of both anthropogenic and biogenic secondary organic material. This finding supports the use of κ<sub>ORG</sub> as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models
    corecore