46 research outputs found

    Coexpression of Ang1 and Tie2 in Odontoblasts of Mouse Developing and Mature Teeth?A New Insight into Dentinogenesis

    Get PDF
    Agiopoieten regulates vascular angiogenesis and stabilization, and is reported to promote bone formation by facilitating angiogenesis. To estimate the role of Ang1 in odontogenesis, we explored the distribution of Ang1 and the receptor, Tie2 in the mouse developing and mature first molar of the mandible. At embryonic day 18, when differentiation of odontoblasts begins, immunosignals for Ang1 were intensely detected in the basement membrane and the distal side, which faced the basement membrane of odontoblasts. In situ hybridization revealed that Ang1 was expressed in odontoblasts and ameloblasts facing the basement membrane. Tie2 was localized in the distal side of odontoblasts. After birth, Ang1 was detected in the predentin, whereas both Ang1 and Tie2 were colocalized in odontoblasts and odontoblast processes. These distributions were retained up to 8 weeks. In contrast to odontoblasts, ameloblasts, cementoblasts and osteoblasts expressed Ang1 but did not express Tie2. Colocalization of Ang1 and Tie2 in odontoblasts and selective expression of Tie2 in odontoblasts among cells responsible for calcified tissue formation suggested the involvement of autocrine signals of Ang1-Tie2 in dentinogenesis

    High-endothelial cell-derived s1p regulates dendritic cell localization and vascular integrity in the lymph node

    Get PDF
    While the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor-1 (S1PR1) axis is critically important for lymphocyte egress from lymphoid organs, S1PR1-activation also occurs in vascular endothelial cells (ECs), including those of the high-endothelial venules (HEVs) that mediate lymphocyte immigration into lymph nodes (LNs). To understand the functional significance of the S1P/S1PR1-Gi axis in HEVs, we generated Lyve1;Spns2Δ/Δ conditional knockout mice for the S1P-transporter Spinster-homologue-2 (SPNS2), as HEVs express LYVE1 during development. In these mice HEVs appeared apoptotic and were severely impaired in function, morphology and size; leading to markedly hypotrophic peripheral LNs. Dendritic cells (DCs) were unable to interact with HEVs, which was also observed in Cdh5CRE-ERT2;S1pr1Δ/Δ mice and wildtype mice treated with S1PR1-antagonists. Wildtype HEVs treated with S1PR1-antagonists in vitro and Lyve1-deficient HEVs show severely reduced release of the DC-chemoattractant CCL21 in vivo. Together, our results reveal that EC-derived S1P warrants HEV-integrity through autocrine control of S1PR1-Gi signaling, and facilitates concomitant HEV-DC interactions.Simmons S., Sasaki N., Umemoto E., et al. High-endothelial cell-derived s1p regulates dendritic cell localization and vascular integrity in the lymph node. eLife 8, e41239 (2019); https://doi.org/10.7554/eLife.41239

    A Connexin40 Mutation Associated With a Malignant Variant of Progressive Familial Heart Block Type I

    Get PDF
    Background-Progressive familial heart block type I (PFHBI) is a hereditary arrhythmia characterized by progressive conduction disturbances in the His-Purkinje system. PFHBI has been linked to genes such as SCN5A that influence cardiac excitability but not to genes that influence cell-to-cell communication. Our goal was to explore whether nucleotide substitutions in genes coding for connexin proteins would associate with clinical cases of PFHBI and if so, to establish a genotype-cell phenotype correlation for that mutation. Methods and Results-We screened 156 probands with PFHBI. In addition to 12 sodium channel mutations, we found a germ line GJA5 (connexin40 [Cx40]) mutation (Q58L) in 1 family. Heterologous expression of Cx40-Q58L in connexin-deficient neuroblastoma cells resulted in marked reduction of junctional conductance (Cx40-wild type [WT], 22.2 ± 1.7 nS, n=14; Cx40-Q58L, 0.56 ± 0.34 nS, n=14; P <0.001) and diffuse localization of immunoreactive proteins in the vicinity of the plasma membrane without formation of gap junctions. Heteromeric cotransfection of Cx40-WT and Cx40-Q58L resulted in homogenous distribution of proteins in the plasma membrane rather than in membrane plaques in ̃ 50% of cells; well-defined gap junctions were observed in other cells. Junctional conductance values correlated with the distribution of gap junction plaques. Conclusions-Mutation Cx40-Q58L impairs gap junction formation at cell-cell interfaces. This is the first demonstration of a germ line mutation in a connexin gene that associates with inherited ventricular arrhythmias and emphasizes the importance of Cx40 in normal propagation in the specialized conduction system

    Zebrafish Vascular Mural Cell Biology: Recent Advances, Development, and Functions

    No full text
    Recruitment of mural cells to the vascular wall is essential for forming the vasculature as well as maintaining proper vascular functions. In recent years, zebrafish genetic tools for mural cell biology have improved substantially. Fluorescently labeled zebrafish mural cell reporter lines enable us to study, with higher spatiotemporal resolution than ever, the processes of mural cell development from their progenitors. Furthermore, recent phenotypic analysis of platelet-derived growth factor beta mutant zebrafish revealed well-conserved organotypic mural cell development and functions in vertebrates with the unique features of zebrafish. However, comprehensive reviews of zebrafish mural cells are lacking. Therefore, herein, we highlight recent advances in zebrafish mural cell tools. We also summarize the fundamental features of zebrafish mural cell development, especially at early stages, and functions

    Angiopoietin-1Tie2 receptor signaling in vascular quiescence and angiogenesis

    No full text
    Angiopoietin (Ang) 1 is a ligand forendothelium-specific receptor tyrosine kinase Tie-2. Inadult vasculature, Ang1/Tie2 signaling is thought toregulate both maintenance of vascular quiescence andpromotion of angiogenesis. However, it has beenunknown how Tie2 signal regulates these distinctbiological functions. Recently, we and Alitalo’s grouphave clarified that Ang1 assembles distinct Tie2signaling complexes in either presence or absence ofendothelial cell-cell adhesions. Ang1 induces trans-association of Tie2 at cell-cell contacts, whereas Tie2 isanchored to the extracellular matrix (ECM) by Ang1 atthe cell-substratum interface. Trans-associated Tie2 andECM-anchored Tie2 activate distinct signalingpathways. In this review, we discuss how Ang1/Tie2signal regulates both maintenance of vascular quiescenceand promotion of angiogenesis, especially focusing onthe roles of trans-associated Tie2 and ECM-anchoredTie

    Protocol for analysis of integrin-mediated cell adhesion of lateral plate mesoderm cells isolated from zebrafish embryos

    No full text
    Summary: Lateral plate mesoderm (LPM) cells differentiate into various cell types including endothelial and hematopoietic cells. In zebrafish embryos, LPM cells migrate toward the midline along the ventral surfaces of somites during which their cell fate specification depends upon efficient integrin-mediated cell adhesion and migration. Herein, we present a protocol for analysis of integrin-mediated cell adhesion of LPM cells isolated from zebrafish embryos. This allows the study of the molecular mechanisms underlying integrin activation required for LPM cell fate specification.For complete details on the use and execution of this protocol, please refer to Rho et al. (2019)

    MAGI-1 Is Required for Rap1 Activation upon Cell-Cell Contact and for Enhancement of Vascular Endothelial Cadherin-mediated Cell Adhesion

    No full text
    Rap1 is a small GTPase that regulates adherens junction maturation. It remains elusive how Rap1 is activated upon cell-cell contact. We demonstrate for the first time that Rap1 is activated upon homophilic engagement of vascular endothelial cadherin (VE-cadherin) at the cell-cell contacts in living cells and that MAGI-1 is required for VE-cadherin-dependent Rap1 activation. We found that MAGI-1 localized to cell-cell contacts presumably by associating with β-catenin and that MAGI-1 bound to a guanine nucleotide exchange factor for Rap1, PDZ-GEF1. Depletion of MAGI-1 suppressed the cell-cell contact-induced Rap1 activation and the VE-cadherin-mediated cell-cell adhesion after Ca(2+) switch. In addition, relocation of vinculin from cell-extracellular matrix contacts to cell-cell contacts after the Ca(2+) switch was inhibited in MAGI-1-depleted cells. Furthermore, inactivation of Rap1 by overexpression of Rap1GAPII impaired the VE-cadherin-dependent cell adhesion. Collectively, MAGI-1 is important for VE-cadherin-dependent Rap1 activation upon cell-cell contact. In addition, once activated, Rap1 upon cell-cell contacts positively regulate the adherens junction formation by relocating vinculin that supports VE-cadherin-based cell adhesion
    corecore