240 research outputs found

    A Prediction of the B*_c mass in full lattice QCD

    Get PDF
    By using the Highly Improved Staggered Quark formalism to handle charm, strange and light valence quarks in full lattice QCD, and NRQCD to handle bottom valence quarks we are able to determine accurately ratios of the B meson vector-pseudoscalar mass splittings, in particular, (m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing the `light' quark mass dependence of this splitting to be very small. Hence we predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the lattice calculation and the third from existing experiment. This is the most accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure

    Spatial variability in iron nutritional status of large diatoms in the Sea of Okhotsk with special reference to the Amur River discharge

    Get PDF
    The Sea of Okhotsk is known as one of the most biologically productive regions among the world's oceans, and its productivity is supported in part by the discharge of iron (Fe)-rich water from the Amur River. However, little is known about the effect of riverine-derived Fe input on the physiology of the large diatoms which often flourish in surface waters of the productive continental shelf region. We conducted diatom-specific immunochemical ferredoxin (Fd) and flavodoxin (Fld) assays in order to investigate the spatial variability of Fe nutritional status in the microplankton-sized (20–200 μm; hereafter micro-sized) diatoms. The Fd index, defined as the proportion of Fd to the sum of Fd plus Fld accumulations in the cells, was used to assess their Fe nutritional status. Additionally, active chlorophyll fluorescence measurements using pulse–amplitude-modulated (PAM) fluorometry were carried out to obtain the maximum photochemical quantum efficiency (<i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>) of photosystem II for the total micro-sized phytoplankton assemblages including diatoms. During our observations in the summer of 2006, the micro-sized diatoms were relatively abundant (> 10 μg C L<sup>&minus;1</sup>) in the neritic region, and formed a massive bloom in Sakhalin Bay near the mouth of the Amur River. Values of the Fd index and <i>F</i><sub>v</sub>/<i>F</i><sub>m</sub> were high (>0.9 and >0.65, respectively) near the river mouth, indicating that Fe was sufficient for growth of the diatoms. However, in oceanic waters of the Sea of Okhotsk, the diatom Fd index declined as cellular Fld accumulation increased. These results suggest that there was a distinct gradient in Fe nutritional status in the micro-sized diatoms from near the Amur River mouth to open waters in the Sea of Okhotsk. A significant correlation between dissolved Fe (D-Fe) concentration and the Fd index was found in waters off Sakhalin Island, indicating that D-Fe was a key factor for the photophysiology of this diatom size class. In the vicinity of the Kuril Islands between the Sea of Okhotsk and the Pacific Ocean, micro-sized diatoms only accumulated Fld (i.e., Fd index = 0), despite strong vertical mixing consistent with elevated surface D-Fe levels (>0.4 nM). Since higher Fe quotas are generally required for diatoms growing under low-light conditions, the micro-sized diatoms off the Kuril Islands possibly encountered Fe and light co-limitations. The differential expressions of Fd and Fld in micro-sized diatoms helped us to understand how these organisms respond to Fe availability in the Sea of Okhotsk in connection with the Amur River discharge

    Two dimensional SU(N) x SU(N) chiral models on the lattice

    Full text link
    Lattice SU(N)×SU(N)SU(N)\times SU(N) chiral models are analyzed by strong and weak coupling expansions and by numerical simulations. 12th12^{th} order strong coupling series for the free and internal energy are obtained for all N6N\geq 6. Three loop contributions to the internal energy and to the lattice β\beta-function are evaluated for all NN and non-universal corrections to the asymptotic Λ\Lambda parameter are computed in the ``temperature'' and the ``energy'' scheme. Numerical simulations confirm a faster approach to asymptopia of the energy scheme. A phenomenological correlation between the peak in the specific heat and the dip of the β\beta-function is observed. Tests of scaling are performed for various physical quantities, finding substantial scaling at ξ2\xi \gtrsim 2. In particular, at N=6N=6 three different mass ratios are determined numerically and found in agreement, within statistical errors of about 1\%, with the theoretical predictions from the exact S-matrix theory.Comment: pre-print IFUP 29/93, revised version, 12 pages, 10 figures avaliable on request by FAX or by mail. REVTE

    One-Loop Matching of the Heavy-Light A_0 and V_0 Currents with NRQCD Heavy and Improved Naive Light Quarks

    Full text link
    One-loop matching of heavy-light currents is carried out for a highly improved lattice action, including the effects of dimension 4 O(1/M) and O(a) operators. We use the NRQCD action for heavy quarks, the Asqtad improved naive action for light quarks, and the Symanzik improved glue action. As part of the matching procedure we also present results for the NRQCD self energy and for massless Asqtad quark wavefunction renormalization with improved glue.Comment: 25 pages, 3 eps-figure

    B meson leptonic decay constant with quenched lattice NRQCD

    Get PDF
    We present a lattice NRQCD study of the B meson decay constant in the quenched approximation with emphasis given to the scaling behavior. The NRQCD action and the heavy-light axial current we use include all terms of order 1/M and the perturbative O(αsa)O(\alpha_s a) and O(αs/M)O(\alpha_s/M) corrections. Using simulations at three value of couplings β\beta=5.7, 5.9 and 6.1 on lattices of size 123×32,163×4812^3\times 32, 16^3\times 48 and 243×6424^3\times 64, we find no significant aa dependence in fBf_B if the O(αsa)O(\alpha_s a) correction is included in the axial current. We obtain fB=167(7)(15)f_B = 167(7)(15) MeV, fBs=191(4)(17)(0+4)f_{B_s}= 191(4)(17)(^{+4}_{-0}) MeV and fBs/fB=1.15(3)(1)(0+3)f_{B_s}/f_B =1.15(3)(1)(^{+3}_{-0}), with the first error being statistical, the second systematic, and the third due to uncertainty of strange quark mass, while quenching errors being not included.Comment: 31 pages, 24 eps figure

    Comparative Study of full QCD Hadron Spectrum and Static Quark Potential with Improved Actions

    Get PDF
    We investigate effects of action improvement on the light hadron spectrum and the static quark potential in two-flavor QCD for a11a^{-1} \approx 1 GeV and mPS/mV=0.70.9m_{PS}/m_V = 0.7-0.9. We compare a renormalization group improved action with the plaquette action for gluons, and the SW-clover action with the Wilson action for quarks. We find a significant improvement in the hadron spectrum by improving the quark action, while the gluon improvement is crucial for a rotationally invariant static potential. We also explore the region of light quark masses corresponding to mPS/mV0.4m_{PS}/m_V \geq 0.4 on a 2.7 fm lattice using the improved gauge and quark action. A flattening of the potential is not observed up to 2 fm.Comment: LaTeX, 35 pages, 22 eps figures, uses revtex and eps

    One-Loop Self Energy and Renormalization of the Speed of Light for some Anisotropic Improved Quark Actions

    Get PDF
    One-loop corrections to the fermion rest mass M_1, wave function renormalization Z_2 and speed of light renormalization C_0 are presented for lattice actions that combine improved glue with clover or D234 quark actions and keep the temporal and spatial lattice spacings, a_t and a_s, distinct. We explore a range of values for the anisotropy parameter \chi = a_s/a_t and treat both massive and massless fermions.Comment: 45 LaTeX pages with 4 postscript figure
    corecore