60 research outputs found
Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large-scale subsidence is the major factor suppressing the deep convection. Therefore, representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and resultant large-scale circulation
Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates
Capitalizing on recently released reanalysis datasets and diabatic heating estimates based on Tropical Rainfall Measuring Mission (TRMM), the authors have conducted a composite analysis of vertical anomalous heating structures associated with the Madden–Julian oscillation (MJO). Because diabatic heating lies at the heart of prevailing MJO theories, the intention of this effort is to provide new insights into the fundamental physics of the MJO. However, some discrepancies in the composite vertical MJO heating profiles are noted among the datasets, particularly between three reanalyses and three TRMM estimates. A westward tilting with altitude in the vertical heating structure of the MJO is clearly evident during its eastward propagation based on three reanalysis datasets, which is particularly pronounced when the MJO migrates from the equatorial eastern Indian Ocean (EEIO) to the western Pacific (WP). In contrast, this vertical tilt in heating structure is not readily seen in the three TRMM products. Moreover, a transition from a shallow to deep heating structure associated with the MJO is clearly evident in a pressure–time plot over both the EEIO and WP in three reanalysis datasets. Although this vertical heating structure transition is detectable over the WP in two TRMM products, it is weakly defined in another dataset over the WP and in all three TRMM datasets over the EEIO.
The vertical structures of radiative heating QR associated with the MJO are also analyzed based on TRMM and two reanalysis datasets. A westward vertical tilt in QR is apparent in all these datasets: that is, the low-level QR is largely in phase of convection, whereas QR in the upper troposphere lags the maximum convection. The results also suggest a potentially important role of radiative heating for the MJO, particularly over the Indian Ocean. Caveats in heating estimates based on both the reanalysis datasets and TRMM are briefly discussed
Suppression of Cdc27B expression induces plant defence responses
Non-host resistance is the most general form of disease resistance in plants because it is effective against most phytopathogens. The importance of hypersensitive responses (HRs) in non-host resistance of Nicotiana species to the oomycete Phytophthora is clear. INF1 elicitin, an elicitor obtained from the late-blight pathogen Phytophthora infestans, is sufficient to induce a typical HR in Nicotiana species. The molecular mechanisms that underlie the non-host resistance component of plant defence responses have been investigated using differential-display polymerase chain reaction (PCR) in a model HR system between INF1 elicitin and tobacco BY-2 cells. Differential-display PCR has revealed that Cdc27B is down-regulated in tobacco BY- 2 cells after treatment with INF1 elicitin. Cdc27B is one of 13 essential components of the anaphase- promoting complex or cyclosome ( APC/ C)-type E3 ubiquitin ligase complex in yeast. This APC/C-type E3 ubiquitin ligase complex regulates G2-to-M phase transition of the cell cycle by proteolytic degradation. In this study, we investigated the roles of this gene, NbCdc27B, in plant defence responses using virus-induced gene silencing. Suppression of NbCdc27B in Nicotiana benthamiana plants induced defence responses and a gain of resistance to Colletotrichum lagenarium fungus. Elicitin-induced hypersensitive cell death (HCD) was inhibited mildly in plants silenced with tobacco rattle virus:: Cdc27B. Cdc27B could manage the signalling pathways of plant defence responses as a negative regulator without HCD.</p
Representation of the penalty term of dynamic concave utilities
In this paper we will provide a representation of the penalty term of general
dynamic concave utilities (hence of dynamic convex risk measures) by applying
the theory of g-expectations.Comment: An updated version is published in Finance & Stochastics. The final
publication is available at http://www.springerlink.co
Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part I: Development of a Model-Based Algorithm
An algorithm, the spectral latent heating (SLH) algorithm, has been developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission precipitation radar with a cloud-resolving model (CRM). Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were produced with numerical simulations of tropical cloud systems in the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. For convective and shallow stratiform regions, the lookup table refers to the precipitation-top height (PTH). For the anvil region, on the other hand, the lookup table refers to the precipitation rate at the melting level instead of PTH. A consistency check of the SLH algorithm was also done with the CRM-simulated outputs. The first advantage of this algorithm is that differences of heating profiles between the shallow convective stage and the deep convective stage can be retrieved. This is a result of the utilization of observed information, not only on precipitation type and intensity, but also on the precipitation depth. The second advantage is that heating profiles in the decaying stage with no surface rain can also be retrieved. This comes from utilization of the precipitation rate at the melting level for anvil regions. 1
MJO Signals in Latent Heating: Results from TRMM Retrievals
Abstract Four Tropical Rainfall Measuring Mission (TRMM) datasets of latent heating were diagnosed for signals in the Madden–Julian oscillation (MJO). In all four datasets, vertical structures of latent heating are dominated by two components—one deep with its peak above the melting level and one shallow with its peak below. Profiles of the two components are nearly ubiquitous in longitude, allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered. All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at a period of 50 days and zonal wavenumber 1, well distinguished from lower- and higher-frequency power and much stronger than the corresponding westward power. The shallow component shows similar but slightly less robust MJO spectral peaks. MJO signals were further extracted from a combination of bandpass (30–90 day) filtered deep and shallow components. Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans. There is a local minimum in the deep components over the Maritime Continent. The shallow components of the MJO differ substantially among the four TRMM datasets in their detailed zonal distributions in the Eastern Hemisphere. In composites of the heating evolution through the life cycle of the MJO, the shallow components lead the deep ones in some datasets and at certain longitudes. In many respects, the four TRMM datasets agree well in their deep components, but not in their shallow components and in the phase relations between the deep and shallow components. These results indicate that caution must be exercised in applications of these latent heating data
- …