173 research outputs found

    Hydraulic Fracturing Mechanism in Reservoirs with a Linear Inclusion Fissure

    Get PDF
    Hydraulic fracturing technology is widely used in most oil-water wells to improve production. However, the mechanism of fracturing in a reservoir with inclusion fissures is still unclear. In this study, a theoretical model was developed to determine the stress distribution during hydraulic fracturing. The line inclusion fissure was regarded as a thin bar and the stress around the artificial fracture, which is affected by a single line inclusion, was determined using the Eshelby equivalent inclusion theory. Stress intensity factors at the tip of both the artificial fracture and the inclusion were achieved, and initiation of the fracture was predicted. Furthermore, to validate the theoretical model, re-fracturing experiments were performed on a large-scale tri-axial system. The results showed that the defects reduce the intensity of the rock, which introduces the possibility that more complex fractures emerge in the reservoir. The results also showed that the fracture direction is governed by far-field stress. The obtained conclusions are helpful to better understand the mechanism of hydraulic fracturing in reservoirs

    Microwave-assisted non-thermal hemp degumming

    Get PDF
    The microwave-assisted non-thermal degumming of hemp fibre has been studied and then compared with the water bath heating under different time and temperature conditions. The results show that the residual gum content of the lean hemp using microwave-assisted heating method is lower than that obtained using water bath heating. The residual gum content gap between the two degumming processes increases first and then decreases as the heating time and temperature are increased. This proves the existence of non-thermal effects in microwave heating process besides the thermal effects in water bath heating. In addition, the structures of the lean hemp fibres obtained from these two methods are also studied by scanning electron microscopy and fourier transform infrared spectroscopy.

    Integration of aggregation-induced emission and delayed fluorescence into electronic donor–acceptor conjugates

    Get PDF
    A series of luminogens comprised electron donors and acceptors are found to possess two types of interesting photophysical processes of aggregation-induced emission (AIE) and delayed fluorescence. According to theory calculation, restriction of intramolecular motions accounts for their AIE characteristics. Moreover, a separated distribution of the HOMOs and the LUMOs of these luminogens leads to small DEST values and therefore delayed fluorescence

    Early warning analysis of mountain flood disaster based on Copula function risk combination

    Get PDF
    Mountain torrent disaster prevention is the focus of flood control and disaster reduction in China. Critical rainfall is an important indicator to determine the success or failure of mountain torrent disaster early warning. In this paper, the M-Copula function is introduced, the multi-dimensional joint distribution of critical rainfall is constructed, and the joint distribution of rainfall and peak rainfall intensity is analyzed. Taking A village in Xinxian County as an example. The critical rainfall of the combined probability is calculated, and the critical rainfall of the flash flood disaster water level, the pre-shift warning and the sharp-shift warning is warned and analyzed. The results show that the flood peak modulus calculated by Yishangfan group is 8.89, which has certain rules for the flood peak modulus of rivers in hilly areas. The larger the basin area is, the smaller the flood peak modulus is, the smaller the area is, and the larger the flood peak modulus is. The calculation result of the design flow of 533 m3/s is reasonable. It is reasonable and reliable to select the M-Copula function as the connection function to fit the joint distribution of rainfall and peak rainfall intensity, which can provide theoretical support for flash flood disaster warning in other regions

    Calibrating the atomic balance by carbon nanoclusters

    Full text link
    Carbon atoms are counted at near atomic-level precision using a scanning transmission electron microscope calibrated by carbon nanocluster mass standards. A linear calibration curve governs the working zone from a few carbon atoms up to 34,000 atoms. This linearity enables adequate averaging of the scattering cross sections, imparting the experiment with near atomic-level precision despite the use of a coarse mass reference. An example of this approach is provided for thin layers of stacked graphene sheets. Suspended sheets with a thickness below 100 nm are visualized, providing quantitative measurement in a regime inaccessible to optical and scanning probe methods

    Ultrasound-Stimulated Microbubbles Enhance Radiosensitization of Nasopharyngeal Carcinoma

    Get PDF
    Background/Aims: Recent studies indicate that therapies targeting the vasculature can significantly sensitize tumors to radiation. Ultrasound-stimulated microbubbles (USMBs) are regarded as a promising radiosensitizer. In this study, we investigated the effect of USMBs on the sensitivity of nasopharyngeal carcinoma (NPC) to radiation. Methods: Human NPC (CNE-2) cells and human umbilical vein endothelial cells (HUVECs) were exposed to radiation (0, 2, and 8 Gy) alone or in combination with USMBs. Cell viability and apoptosis were measured with the MTT assay and flow cytometry, respectively. The angiogenic activity of HUVECs was detected using matrigel tubule formation. The in vitro effects induced by these treatments were confirmed in vivo with xenograft models of CNE-2 cells in nude mice by examining vascular integrity using color Doppler flow imaging and cell survival using immunohistochemistry. Additionally, the in vivo and in vitro expressions of angiotensin II (ANG II) and its receptor (AT1R) were detected by immunohistochemistry and western blotting, respectively. With CNE-2 cells and HUVECs transfected with control, ANG II, or AT1R, perindopril (an inhibitor of angiotensin-converting enzyme) and candesartan (an inhibitor of AT1R) were used to verify the role of ANG II and AT1R in the radiosensitivity of tumor and endothelial cells by USMBs, by determining cell viability and apoptosis and angiogenic activity. Results: In the NPC xenografts, USMBs slightly reduced blood flow and CD34 expression, increased tumor cell death and ANG II and AT1R expression, and significantly enhanced the effects of radiation. With CNE-2 cells and HUVECs, the USMBs further enhanced the inhibition of tumor cell viability and endothelial tubule formation and further enhanced the increase in ANG II and AT1R due to radiation. Furthermore, perindopril and candesartan significantly enhanced the inhibitory effect of radiation and USMBs on tumor cell growth and angiogenesis in vitro. Conclusions: We have demonstrated for the first time that USMB exposure can significantly enhance the destructive effect on NPC of radiation, and this effect might be further increased by ANG II and AT1R inhibition. Our findings suggest that USMBs can be used as a promising sensitizer of radiotherapy to treat NPC, and the clinical effect might be increased by ANG II and AT1R inhibition

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    • …
    corecore