22 research outputs found

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Oral health guidelines in humanitarian settings

    No full text

    An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis

    No full text
    Thin films of TiO2 and boron-nitrogen (B/N) co-doped TiO 2 on glass substrates have been prepared by a simple sol-gel dip coating route. Titanium (IV) isopropoxide, boric acid and urea have been used as titanium, boron and nitrogen sources, respectively. The films were characterized by X-ray diffraction, X-ray photo-electron spectroscopy, scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy. The TiO 2 thin films with co-doping of different B/N atomic ratios (0.27-20.89) showed better photo-catalytic degradation ability of methylene blue compared to that of bare-TiO2 under visible light. The TiO 2 film doped with the highest atomic concentration of N showed repeatedly the best photo-catalytic performance. The high activity of co-doped TiO2 thin films toward organic degradation can be related to the stronger absorption observed in the UV-vis region, red shift in adsorption edges and surface acidity induced by B/N doping. Furthermore, several atomic models for B/N doping have been used to investigate the effect of doping on electronic structure and density of states of TiO2 through ab-initio density functional theory calculations. The computational study suggested a significant narrowing of the band gap due to the formation of midgap states and the shift of Fermi-level for the interstitial N model supporting the experimental results. © 2013 Elsevier B.V

    An Experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis

    No full text
    Cataloged from PDF version of article.Thin films of TiO2 and boron-nitrogen (B/N) co-doped TiO2 on glass substrates have been prepared by a simple sol-gel dip coating route. Titanium (IV) isopropoxide, boric acid and urea have been used as titanium, boron and nitrogen sources, respectively. The films were characterized by X-ray diffraction, X-ray photo-electron spectroscopy, scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy. The TiO2 thin films with co-doping of different B/N atomic ratios (0.27-20.89) showed better photo-catalytic degradation ability of methylene blue compared to that of bare-TiO2 under visible light. The TiO2 film doped with the highest atomic concentration of N showed repeatedly the best photocatalytic performance. The high activity of co-doped TiO2 thin films toward organic degradation can be related to the stronger absorption observed in the UV-vis region, red shift in adsorption edges and surface acidity induced by B/N doping. Furthermore, several atomic models for B/N doping have been used to investigate the effect of doping on electronic structure and density of states of TiO2 through ab-initio density functional theory calculations. The computational study suggested a significant narrowing of the band gap due to the formation of midgap states and the shift of Fermi-level for the interstitial N model supporting the experimental results. (C) 2013 Elsevier B.V. All rights reserved

    Bacterial colonization of a power-driven water flosser during regular use : A proof-of-principle study

    No full text
    OBJECTIVES: The present proof-of-principle study assessed whether daily use of a power-driven water flosser (Sonicare AirFloss; SAF) leads to bacterial colonization in the nozzle and/or the device, resulting in contaminated water-jet. MATERIAL AND METHODS: In five participants, saliva samples at baseline and water-jet samples of devices used daily with bottled water for 3 weeks (test) were collected. Additionally, water-jet samples from devices used daily with bottled water extra-orally for 3 weeks (positive control) and from brand new devices (negative control), as well as samples from newly opened and 1- and 3-week opened water bottles were collected. Colony forming units (CFU) were recorded after 48 h culturing and 20 oral pathogens were assessed by polymerase chain reaction-based analysis. RESULTS: Distinct inter-individual differences regarding the number of detected bacteria were observed; water-jet samples of test devices included both aerobic and anaerobic bacterial species, with some similarities to the saliva sample of the user. Water-jet samples from positive control devices showed limited number of aerobic and anaerobic bacterial species, while the samples from negative control devices did not show any bacterial species. Very few aerobic bacteria were detected only in the 3-week-old bottled water samples, while samples of newly and 1-week opened water bottles did not show any bacterial growth. CONCLUSIONS: The present proof-of-principle study showed that daily use of a power-driven water flosser for 3 weeks resulted in bacterial colonization in the nozzle and/or device with both aerobic and anaerobic, not only oral, species, that are transmitted via the water-jet
    corecore