166 research outputs found

    Fly-DPI: database of protein interactomes for D. melanogaster in the approach of systems biology

    Get PDF
    BACKGROUND: Proteins control and mediate many biological activities of cells by interacting with other protein partners. This work presents a statistical model to predict protein interaction networks of Drosophila melanogaster based on insight into domain interactions. RESULTS: Three high-throughput yeast two-hybrid experiments and the collection in FlyBase were used as our starting datasets. The co-occurrences of domains in these interactive events are converted into a probability score of domain-domain interaction. These scores are used to infer putative interaction among all available open reading frames (ORFs) of fruit fly. Additionally, the likelihood function is used to estimate all potential protein-protein interactions. All parameters are successfully iterated and MLE is obtained for each pair of domains. Additionally, the maximized likelihood reaches its converged criteria and maintains the probability stable. The hybrid model achieves a high specificity with a loss of sensitivity, suggesting that the model may possess major features of protein-protein interactions. Several putative interactions predicted by the proposed hybrid model are supported by literatures, while experimental data with a low probability score indicate an uncertain reliability and require further proof of interaction. Fly-DPI is the online database used to present this work. It is an integrated proteomics tool with comprehensive protein annotation information from major databases as well as an effective means of predicting protein-protein interactions. As a novel search strategy, the ping-pong search is a naïve path map between two chosen proteins based on pre-computed shortest paths. Adopting effective filtering strategies will facilitate researchers in depicting the bird's eye view of the network of interest. Fly-DPI can be accessed at . CONCLUSION: This work provides two reference systems, statistical and biological, to evaluate the reliability of protein interaction. First, the hybrid model statistically estimates both experimental and predicted protein interaction relationships. Second, the biological information for filtering and annotation itself is a strong indicator for the reliability of protein-protein interaction. The space-temporal or stage-specific expression patterns of genes are also critical for identifying proteins involved in a particular situation

    Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications

    Get PDF
    AbstractSilver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV–vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV–vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers

    Effects of Noise Electrical Stimulation on Proprioception, Force Control, and Corticomuscular Functional Connectivity

    Get PDF
    Sensory afferent inputs play an important role in neuromuscular functions. Subsensory level noise electrical stimulation enhances the sensitivity of peripheral sensory system and improves lower extremity motor function. The current study aimed to investigate the immediate effects of noise electrical stimulation on proprioceptive senses and grip force control, and whether there are associated neural activities in the central nervous system. Fourteen healthy adults participated in 2 experiments on 2 different days. In day 1, participants performed grip force and joint proprioceptive tasks with and without (sham) noise electrical stimulation. In day 2, participants performed grip force steady hold task before and after 30-min noise electrical stimulation. Noise stimulation was applied with surface electrodes secured along the course of the median nerve and proximal to the coronoid fossa EEG power spectrum density of bilateral sensorimotor cortex and coherence between EEG and finger flexor EMG were calculated and compared. Wilcoxon Signed-Rank Tests were used to compare the differences of proprioception, force control, EEG power spectrum density and EEG-EMG coherence between noise electrical stimulation and sham conditions. The significance level (alpha) was set at 0.05. Our study found that noise stimulation with optimal intensity could improve both force and joint proprioceptive senses. Furthermore, individuals with higher gamma coherence showed better force proprioceptive sense improvement with 30-min noise electrical stimulation. These observations indicate the potential clinical benefits of noise stimulation on individuals with impaired proprioceptive senses and the characteristics of individuals who might benefit from noise stimulation

    Transcriptomic analyses of regenerating adult feathers in chicken

    Get PDF
    Transcriptome Expression Data. Table of mapped reads to Galgal4 transcripts for all 15 data sets. FPKM (Fragments per kilobase of exon per million fragments mapped): normalized transcript abundance values for each gene in the indicated tissues. (CSV 1314 kb

    Induction chemotherapy with dose-modified docetaxel, cisplatin, and 5-fluorouracil in Asian patients with borderline resectable or unresectable head and neck cancer

    Get PDF
    BackgroundSignificant ethnic differences in susceptibility to the effects of chemotherapy exist. Here, we retrospectively analyzed the safety and efficacy of induction chemotherapy (ICT) with dose-modified docetaxel, cisplatin, and 5-fluorouracil (TPF) in Asian patients with borderline resectable or unresectable head and neck squamous cell carcinoma (HNSCC).MethodsBased on the incidence of adverse events that occurred during daily practice, TPF90 (90% of the original TPF dosage; docetaxel 67.5 mg/m2 on Day 1, cisplatin 67.5 mg/m2 on Day 1, and 5-fluorouracil 675 mg/m2 on Days 1–5) was used for HNSCC patients who were scheduled to receive ICT TPF.ResultsBetween March 2011 and May 2014, 52 consecutive patients with borderline resectable or unresectable HNSCC were treated with ICT TPF90 followed by concurrent chemoradiotherapy. Forty-four patients (84.6%) received at least three cycles of ICT TPF90. The most commonly observed Grade 3–4 adverse events included neutropenia (35%), anemia (25%), stomatitis (35%), diarrhea (16%), and infections (13.5%). In an intention-to-treat analysis, the complete and partial response rates after ICT TPF90 were 13.5% and 59.6%, respectively. The complete and partial response rates following radiotherapy and salvage surgery were 42.3% and 25.0%, respectively. The estimated 3-year overall survival and progression-free survival rates were 41% [95% confidence interval (CI): 25–56%] and 23% (95% CI: 10–39%), respectively. The observed median overall survival and progression-free survival were 21.0 months (95% CI: 13.3–28.7 months) and 16.0 months (95% CI: 10.7–21.3 months), respectively.ConclusionTPF90 is a suitable option for Asian patients with borderline resectable or unresectable HNSCC who are scheduled for ICT

    Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros)

    Get PDF
    The origin and maintenance of intraspecific variation in vocal signals is important for population divergence and speciation. Where vocalizations are transmitted by vertical cultural inheritance, similarity will reflect co-ancestry, and thus vocal divergence should reflect genetic structure. Horseshoe bats are characterized by echolocation calls dominated by a constant frequency component that is partly determined by maternal imprinting. Although previous studies showed that constant frequency calls are also influenced by some non-genetic factors, it is not known how frequency relates to genetic structure. To test this, we related constant frequency variation to genetic and non-genetic variables in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Recordings of bats from across Taiwan revealed that females called at higher frequencies than males; however, we found no effect of environmental or morphological factors on call frequency. By comparison, variation showed clear population structure, with frequencies lower in the centre and east, and higher in the north and south. Within these regions, frequency divergence was directional and correlated with geographical distance, suggesting that call frequencies are subject to cultural drift. However, microsatellite clustering analysis showed that broad differences in constant frequency among populations corresponded to discontinuities in allele frequencies resulting from vicariant events. Our results provide evidence that the processes shaping genetic subdivision have concomitant consequences for divergence in echolocation call frequency
    corecore