4,629 research outputs found

    PLANTAR FOOT PRESSURE ANALYSIS FOR XING HUINA -THE WOMEN 10000 METER CHAMPION IN ATHENS OLYMPICS

    Get PDF
    In the middle-distance race, the running technology of the Athlete plays an important role in the foot pressure distributions. On the side, the movement of the foot pressure also affects the running technology. The two aspects are closely related and interact with each other. In the study of the middle-distance race, the plantar foot pressure analysis has a significant impact on the prevention of the sport injuries and orthopedics

    Spatial performance of skewed continuous rigid-frame bridges based on finite element analysis

    Get PDF
    Continuous rigid-frame bridges are usually symmetrically designed along the bridge center line for simplicity and clarity purposes. However, the skewed bridges are necessary in case of complex intersections with space constraint in highways. Previous research mainly focuses on the discussion of skewed angle and the interaction between girders and cross frames on I shape section. Box sections are also used for skewed bridge due to large torsion stiffness, which have many problems during service time. This paper analyzed coupled skew and bending effect for the bridge which combines the continuous rigid-frame system and skewed system. For skewed bridges, significant out-of-lane effect occurs in bridges, which is hard to be predicted through linear analysis. For continuous bridges, at the interior supports, negative bending moments exist. In addition, a part of each diaphragm of the bridge is connected to the main girder, and the rest part only carries its self-weight, which makes the girder behavior more complex in the transverse direction. Therefore, the spatial performance of the bridge is very complex. The design cannot only use simple two dimension analysis. In the paper the three dimensional finite element analysis was conducted to find the effect due to dead load, live load, temperature, and brake force to find critical position for monitoring and maintainance. Primary bending normal stress, warping normal stress, coefficient of shearing force lag and stress distribution of consolidation pier were analyzed and output. The behavior of both superstructure and sub structure were investigated. The effect of coupled bending and torsion is significant to the behavior of the bridge. Finally the design recommendations about the skew bridge are given. The critical positions for the further test and monitoring are found

    Scaling of Dzyaloshinskii Moriya interaction at heavy metal and ferromagnetic metal interfaces

    Full text link
    The Dzyaloshinskii Moriya Interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5d band filling (5d^3~5d^10) of the HM element in HM/CoFeB/MgO multilayer thin films. DMI is quantitatively evaluated by measuring asymmetric spin wave dispersion using Brillouin light scattering. Sign reversal and 20 times modification of the DMI coefficient D have been measured as the 5d HM element is varied. The chemical trend can be qualitatively understood by considering the 5d and 3d bands alignment at the HM/FM interface and the subsequent orbital hybridization around the Fermi level. Furthermore, a positive correlation is observed between DMI and spin mixing conductance at the HM/FM interfaces. Our results provide new insights into the interfacial DMI for designing future spintronic devices

    1-[2-(3,5-Difluoro­benz­yloxy)phen­yl]ethanone

    Get PDF
    In the title compound, C15H12F2O2, the dihedral angle between the aromatic rings is 70.43 (4)°. The crystal packing exhibits no significantly short inter­molecular contacts

    Multi-wavelength Stellar Polarimetry of the Filamentary Cloud IC5146: I. Dust Properties

    Get PDF
    We present optical and near-infrared stellar polarization observations toward the dark filamentary clouds associated with IC5146. The data allow us to investigate the dust properties (this paper) and the magnetic field structure (Paper II). A total of 2022 background stars were detected in RcR_{c}-, ii'-, HH-, and/or KK-bands to AV25A_V \lesssim 25 mag. The ratio of the polarization percentage at different wavelengths provides an estimate of λmax\lambda_{max}, the wavelength of peak polarization, which is an indicator of the small-size cutoff of the grain size distribution. The grain size distribution seems to significantly change at AVA_V \sim 3 mag, where both the average and dispersion of PRc/PHP_{R_c}/P_{H} decrease. In addition, we found λmax\lambda_{max} \sim 0.6-0.9 μ\mum for AV>2.5A_V>2.5 mag, which is larger than the \sim 0.55 μ\mum in the general ISM, suggesting that grain growth has already started in low AVA_V regions. Our data also reveal that polarization efficiency (PE Pλ/AV\equiv P_{\lambda}/A_V) decreases with AVA_V as a power-law in RcR_c-, ii'-, and KK-bands with indices of -0.71±\pm0.10, -1.23±\pm0.10 and -0.53±\pm0.09. However, HH-band data show a power index change; the PE varies with AVA_V steeply (index of -0.95±\pm0.30) when AV<2.88±0.67A_V < 2.88\pm0.67 mag but softly (index of -0.25±\pm0.06) for greater AVA_V values. The soft decay of PE in high AVA_V regions is consistent with the Radiative Aligned Torque model, suggesting that our data trace the magnetic field to AV20A_V \sim 20 mag. Furthermore, the breakpoint found in HH-band is similar to the AVA_V where we found the PRc/PHP_{R_c}/P_{H} dispersion significantly decreased. Therefore, the flat PE-AVA_V in high AVA_V regions implies that the power index changes result from additional grain growth.Comment: 31 pages, 17 figures, and 3 tables; accepted for publication in Ap

    Winding Clearness for Differentiable Point Cloud Optimization

    Full text link
    We propose to explore the properties of raw point clouds through the \emph{winding clearness}, a concept we first introduce for assessing the clarity of the interior/exterior relationships represented by the winding number field of the point cloud. In geometric modeling, the winding number is a powerful tool for distinguishing the interior and exterior of a given surface Ω\partial \Omega, and it has been previously used for point normal orientation and surface reconstruction. In this work, we introduce a novel approach to assess and optimize the quality of point clouds based on the winding clearness. We observe that point clouds with reduced noise tend to exhibit improved winding clearness. Accordingly, we propose an objective function that quantifies the error in winding clearness, solely utilizing the positions of the point clouds. Moreover, we demonstrate that the winding clearness error is differentiable and can serve as a loss function in optimization-based and learning-based point cloud processing. In the optimization-based method, the loss function is directly back-propagated to update the point positions, resulting in an overall improvement of the point cloud. In the learning-based method, we incorporate the winding clearness as a geometric constraint in the diffusion-based 3D generative model. Experimental results demonstrate the effectiveness of optimizing the winding clearness in enhancing the quality of the point clouds. Our method exhibits superior performance in handling noisy point clouds with thin structures, highlighting the benefits of the global perspective enabled by the winding number

    Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects

    Get PDF
    A six-channel wavelength-division-multiplexed optical transceiver with a compact footprint of 1.5 x 0.65 mm(2) for off-chip and on-chip interconnects is demonstrated on a single silicon-on-insulator chip. An arrayed waveguide grating is used as the (de)multiplexer, and III-V electroabsorption sections fabricated by hybrid integration technology are used as both modulators and detectors, which also enable duplex links. The 30-Gb/s capacity for each of the six wavelength channels for the off-chip transceiver is demonstrated. For the on-chip interconnect, an electrical-to-electrical 3-dB bandwidth of 13 GHz and a data rate of 30 Gb/s per wavelength are achieved

    Diisopropyl pyrazine-2,5-dicarboxyl­ate

    Get PDF
    The mol­ecule of the title compound, C12H16N2O4, is located on an inversion center. The carboxyl­ate groups are twisted slightly with respect to the pyrazine ring, making a dihedral angle of 6.4 (3)°
    corecore