3,604 research outputs found

    Research on the drag reduction performance induced by the counterflowing jet for waverider with variable blunt radii

    Get PDF
    Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k–ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7–8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4–5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance

    9-Phenyl-4,5-diaza-9H-fluoren-9-ol monohydrate

    Get PDF
    The title compound, C17H12N2O·H2O, was synthesized by the reaction of 4,5-diaza­fluoren-9-one with a Grignard reagent in ether (the reaction mixture being hydrolysed with saturated NH4Cl solution), and crystallizes with two organic mol­ecules and two water mol­ecules in the asymmetric unit. The 4,5-diaza­fluorene fragment is approximately planar, with r.m.s. deviations of 0.0448 and 0.0198 Å in the two mol­ecules. The dihedral angles between the 4,5-diaza­fluorene planes and the phenyl ring are 80.49 (6) and 76.57 (7)°. The crystal packing features O—H⋯N and O—H⋯O hydrogen bonds involving the bridging solvent water mol­ecules, which link the mol­ecules into a three-dimensional network

    Performance evaluation of a tidal current turbine with bidirectional symmetrical foils

    Get PDF
    As one might expect, tidal currents in terms of ebb and flood tides are approximately bidirectional. A Horizontal Axial Tidal Turbine (HATT) with unidirectional foils has to be able to face the current directions in order to maximize current energy harvesting. There are two regular solutions to keep a HATT always facing the direction of the flow, which are transferred from wind turbine applications. One is to yaw the turbine around the supporting structure with a yaw mechanism. The other is to reverse the blade pitch angle through 180° with a pitch-adjusting mechanism. The above solutions are not cost-effective in marine applications due to the harsh marine environment and high cost of installation and maintenance. In order to avoid the above disadvantages, a turbine with bidirectional foils is presented in this paper. A bare turbine with bidirectional foils is characterized in that it has nearly the same energy conversion capability in both tidal current directions without using the yaw or pitch mechanism. Considering the working conditions of the bidirectional turbine in which the turbine is installed on a mono-pile, the effect of the mono-pile on the turbine’s performance is evaluated in this paper, especially when the turbine is downstream of the mono-pile. The paper was focused on the evaluation of the hydrodynamic performance of the bidirectional turbine. The hydrodynamic performance of the bare bidirectional turbine without any supporting structure was evaluated based on a steady-state computational fluid dynamics (CFD) model and model tests. Performance comparison has been made between the turbine with bidirectional foils and the turbine with NACA foils. The effect of the mono-pile on the performance of the bidirectional turbine was studied by using the steady-state and the transient CFD model. The steady-state CFD model was used to evaluate the effect of the mono-pile clearance, which is the distance between the mono-pile and the turbine on the performance of the turbine. The transient CFD model was used to determine the time-dependent characteristics of the turbine, such as time-dependent power and drag coefficients. The results show that the bare bidirectional turbine has nearly the same energy conversion capability in both tidal current directions. The performance of the bidirectional turbine is inferior to the turbine with NACA foils. At the designed tip speed ratio, the power coefficient of the turbine with NACA foils is 0.4498, which increases by 1.6% compared to the 0.4338 of the bidirectional turbine. The turbine’s performance decreases due to the introduction of the mono-pile, and the closer the turbine is to the mono-pile, the greater effect on the turbine’s performance the mono-pile has. At the designed clearance of 1.5 DS, the presence of a mono-pile decreases the peak Cp value by 1.82% and 3.17% to a value of 0.4156 and 0.4004 for the turbine located in the mono-pile upstream and downstream, respectively. The mono-pile can result in the fluctuation of the turbine’s performance. This fluctuation will detrimentally harm the life of the turbine as it will lead to increased wear and fatigue issues

    Optimal design of a thin-wall diffuser for performance improvement of a tidal energy system for an AUV

    Get PDF
    The study presents an energy performance improvement measure for an Autonomous Underwater Vehicle (AUV) carrying oceanographic equipment for collecting scientific data from the ocean. The required electric energy for the on-board equipment is harvested from tidal energy by using twin horizontal axis turbines which are integrated with thin-wall diffusers to enhance their energy capturing performance. The main focus and hence objective of the paper is the optimal design of the diffusers by using Reynolds Average Navier–Stokes Equations (RANSE) based Computational Fluid Dynamics (CFD) method and the validation of the design using physical model tests. A goal-driven optimisation procedure is used to achieve a higher power coefficient for the turbine while keeping the size and the drag of the diffuser as practically minimum as possible. Two main parameters of the optimisation are selected, the outlet diameter and the expansion section length of the diffusers, which are optimised for the highest flow acceleration ratio at the diffuser throat and for the minimum drag of the integrated diffuser and turbine system which is called as "Diffuser Augmented Tidal Turbine" (DATT) system. The numerical optimisation is validated by two sets of physical model tests conducted with a single turbine without diffuser and the same turbine integrated with the diffuser (DATT) in a cavitation tunnel and a circulating water channel. These tests demonstrated a performance enhancement for the turbine with the optimal diffuser by almost doubling the power coefficient of the turbine without the diffuser. However, the performance enhancement was dependent upon the pitch angle of the turbine

    Serum HBV RNA: a New Potential Biomarker for Chronic Hepatitis B Virus Infection

    Get PDF
    Chronic hepatitis B (CHB) is one of the major etiological causes of liver failure, cirrhosis, and hepatocellular carcinoma worldwide, and it cannot be completely cured by currently available drugs due to the persistent existence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), the bona fide transcription template for HBV RNAs, in the infected hepatocytes. Since quantifying cccDNA per se requires an invasive procedure, serum biomarkers reflecting the intrahepatic cccDNA activity are warranted. Recently, a growing body of research suggests that the circulating HBV RNA may serve as a new serum biomarker for HBV infection, treatment and prognosis. In order to delineate the molecular and clinical characteristics of serum HBV RNA, we systematically reviewed the available literature on serum HBV RNA dating back to early 1990s. In this review, we will summarize the reported serum HBV RNA quantification methods and discuss the potential HBV RNA species in patient serum, and compare the reported correlations of serum HBV RNA with other serological markers, including HBV DNA, hepatitis B surface antigen (HBsAg), e antigen (HBeAg), and core‐related antigen (HBcrAg), as well as their correlations with the intrahepatic cccDNA, to assess its potential in clinical applications. The future directions for serum HBV RNA research will also be discussed

    Deep Imaging of the HCG 95 Field.I.Ultra-diffuse Galaxies

    Full text link
    We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree2^2 field centered on the Hickson Compact Group 95 (HCG 95) using deep gg- and rr-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at zz=0.199) and two poor clusters (Pegasus I at zz=0.013 and Pegasus II at zz=0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50 - 60 true UDGs with a half-light radius re>1.5r_{\rm e} > 1.5 kpc and a central surface brightness μ(g,0)>24.0\mu(g,0) > 24.0 mag arcsec2^{-2}. Deep zz'-band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in grg-r color, and \sim26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass 1.1×109M1.1 \times 10^{9} M_{\odot} detected by the Very Large Array, and has a stellar mass of M1.8×108M_\star \sim 1.8 \times 10^{8} MM_{\odot}. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.Comment: Published in Ap

    Data augmentation to improve the performance of ensemble learning for system failure prediction with limited observations

    Get PDF
    Ensemble learning has been widely used to improve the performance and robustness of machine learning algorithms on time series data. However, in real operational processes where the observed data is limited, it hinders the capability of ensemble learning algorithms. To address the challenge of limited observed data, this paper proposes a novel three-layer ensemble learning framework by use of data augmentation. Firstly, multiple classical time series augmentation methods are applied to increase the size of the data set. Subsequently, after pre-processing, these augmented data is trained by multiple basic learners with K-fold cross-validation as the first layer of the developed ensemble learning framework. The outputs of the first layer are integrated via LASSO to further improve the prediction performance, which serves as the second layer of the developed framework. Finally, the third-layer output is generated by averaging the prediction of the second layer and the output from an improved Long-Short Term Memory model that provides prediction based on the augmented data. A case study on a real wastewater treatment plant is used to illustrate the effectiveness of the proposed method

    Risk factors for high-altitude headache upon acute high-altitude exposure at 3700 m in young Chinese men: a cohort study.

    Get PDF
    BackgroundThis prospective and observational study aimed to identify demographic, physiological and psychological risk factors associated with high-altitude headache (HAH) upon acute high-altitude exposure.MethodsEight hundred fifty subjects ascended by plane to 3700 m above Chengdu (500 m) over a period of two hours. Structured Case Report Form (CRF) questionnaires were used to record demographic information, physiological examinations, psychological scale, and symptoms including headache and insomnia a week before ascending and within 24 hours after arrival at 3700 m. Binary logistic regression models were used to analyze the risk factors for HAH.ResultsThe incidence of HAH was 73.3%. Age (p =0.011), physical labor intensity (PLI) (p =0.044), primary headache history (p <0.001), insomnia (p <0.001), arterial oxygen saturation (SaO2) (p =0.001), heart rate (HR) (p =0.002), the Self-Rating Anxiety Scale (SAS) (p <0.001), and the Epworth Sleepiness Scale (ESS) (p <0.001) were significantly different between HAH and non-HAH groups. Logistic regression models identified primary headache history, insomnia, low SaO2, high HR and SAS as independent risk factors for HAH.ConclusionsInsomnia, primary headache history, low SaO2, high HR, and high SAS score are the risk factors for HAH. Our findings will provide novel avenues for the study, prevention and treatment of HAH
    corecore