
Abstract – Ensemble learning has been widely used to 
improve the performance and robustness of machine 
learning algorithms on time series data. However, in real 
operational processes where the observed data is limited, it 
hinders the capability of ensemble learning algorithms. To 
address the challenge of limited observed data, this paper 
proposes a novel three-layer ensemble learning framework 
by use of data augmentation. Firstly, multiple classical time 
series augmentation methods are applied to increase the size 
of the data set. Subsequently, after pre-processing, these 
augmented data is trained by multiple basic learners with K-
fold cross-validation as the first layer of the developed 
ensemble learning framework. The outputs of the first layer 
are integrated via LASSO to further improve the prediction 
performance, which serves as the second layer of the 
developed framework. Finally, the third-layer output is 
generated by averaging the prediction of the second layer 
and the output from an improved Long-Short Term 
Memory model that provides prediction based on the 
augmented data. A case study on a real wastewater 
treatment plant is used to illustrate the effectiveness of the 
proposed method.  

Keywords – Ensemble learning, data augmentation, 
failure prediction, time series data, data reweight 

I. INTRODUCTION

 As one of the key issues in the research field of 
Prognostic and Health Management, the prediction of 
health indicators aims to alert the system faults in advance 
and assist in maintenance decision-making [1]. During the 
operational process, the health indicators are collected in 
the form of time series to reflect the degradation level. 
Model-based, physical-based and data-driven are three 
main methods developed in the research field of failure 
prediction with time series data [2]. Recently, the 
application of data-driven methods has attracted an 
increasing attention due to its ability to provide accurate 
predictions without exploring the mechanism of complex 
systems [3]. 
 In an early stage, statistical models including the 
Autoregressive Integrated Moving model (ARIMA) and 
Exponential Smoothing have gained popularity in the time 
series prediction [4]. However, these methods have 
limited capabilities as they fail to capture the feature of 
high dimension [5]. Machine learning methods such as 
Support Vector Machine (SVM), Decision Tree and 
Long-Short Term Memory model (LSTM) have shown 
high performance in representing latent features and 
improving prediction accuracy [6].  

 To improve the applicability of machine learning 
algorithms, ensemble learning has been proposed to 
integrate multiple machine learning models in different 
structures, including bagging, boosting and stacking 
methods [7-8]. Nevertheless, in reality, there are cases 
that few inspections/observational data are attainable in 
industrial engineering systems, which is likely to cause 
overfitting in machine learning algorithms, and therefore 
degrade the performance of ensemble learning [9]. 
 In less data-abundant settings, data augmentation 
methods are useful to generate artificial data sets and 
avoid overfitting. It can be witnessed from the literature 
that most of the research focuses on training a specific 
machine learning algorithm with the augmented data [10-
11]. However, to the best of our knowledge, there is no 
work on enhancing the performance of ensemble learning 
framework with limited data for system failure prediction. 
 Considering the insufficiency of training data, this 
paper proposes a novel framework to improve the 
prediction of health indicators based on a three-layer 
ensemble learning framework. The main contributions are 
summarized as follows: 

1) Multi data augmentation methods are adopted to
generate artificial data.

2) A three-layer ensemble learning framework is
developed to effectively integrate the augmented
data set and improve the prediction performance
with limited real data.

3) A case study based on a real Wastewater
Treatment Plant (WWTP) is conducted to verify
the effectiveness of the proposed method.

II. THE PROPOSED ENSEMBLE LEARNING
FRAMEWORK 

A. Overview of the proposed method

We propose a three-layer ensemble framework
integrating multi data augmentation methods to improve 
the failure prediction accuracy. The first step is generating 
augmented data and then pre-processing these artificial 
data by normalization and moving window methods. 
Subsequently, these pre-processed data will be channeled 
into the three-layer ensemble learning framework. The 
first two layers in the ensemble learning framework aim 
to stack classical machine learning algorithms. The third 
layer averages the stacking outputs and estimations from 
an improved LSTM model considering data reweight 
process. The detailed framework is given in Fig. 1. 
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Fig. 1. The overall structure of the proposed method. 

 

B. Data augmentation and pre-processing 
 

In order to overcome the overfitting caused by 
insufficient data, six classical data augmentation methods 
are applied in this paper, including jittering, scaling, 
permutation, magnitude warping, window slicing and 
window warping [12]. 

Jittering produces artificial data by adding noise �� to 
the real data, and the noise follows the Gaussian 
distribution ��~�(0, ��

�) . Scaling aims to change the 
magnitude of time series with a random scalar value �, 
which follows the Gaussian distribution �~�(0, ��

�) . 
Permutation has been proposed to disrupt the order of 
segments of time series and the numbers of segments �� 
is the key variable. Magnitude warping is a specific 
augmentation method to wrap the time series data by a 
smoothed curve with knots parameters, which are 
generated randomly and follow the Gaussian distribution 
�(1, ��

� ). ��
�  and the total number of knots �  are both 

the hyperparameters of magnitude warping. Window 
slicing is similar to cropping in the image data 
augmentation by slicing time steps, and the size of 
window which can be decided by the wrap ratio ��� . 
Window warping origins from time wrapping by taking a 
random window of time series and perturbing a pattern in 
the temporal dimension. The wrap ratio �WW  is a 
parameter of window warping and can be tuned further in 
the experiment. The examples of different data 
augmentation methods are illustrated in Fig. 2. 

Data normalization and moving window method are 
included during the pre-processing of the augmented data. 
We combine the synthetic data generated from different 
augmentation methods to obtain a big dataset. In order to 
better fit the machine learning algorithms, we utilize the 
min-max scaling to the range within [0,1]. 

 
(1). Jittering 
 (�� = 0.05) 

 
(2). Scaling 
 (�� = 0.5) 

 
(3). Permutation  

(�� = 12) 

 
(4). Magnitude Warping 

 (�� = 0.1, � = 4) 

 
(5). Window Slicing  

(��� = 0.6) 

 
(6). Window Wrapping 

(��� = 0.5) 

 
Fig. 2. Illustration of data augmentation methods. 

 

Moving window method is applied to generate 
samples by using the previous � data points to predict the 
next data points at time �. The synthetic data samples after 
normalization and moving window are in the form of 
pairs and denoted as {(��

�, ��
�), 1 ≤ � ≤ �}, where ��

� is the 

input value of ���  synthetic sample after pre-processing, 
��

� is the associated output value. We also define the real 
data points after pre-processing as {(��

r, ��
r), 1 ≤ � ≤ �} is 

the set of the pre-processed real data samples, where 
(��

r, ��
r) is the �th  data sample in real data set after pre-

processing. 
 
C. Three-layer ensemble learning framework 
 

A three-layer ensemble learning framework based on 
staking method is proposed in this paper. In the first layer, 
three basic learners based on Decision Tree, including 
eXtreme Gradient Boosting (XGB), Gradient boosting 
regression (GBR) and Light Gradient Boosting Machine 
(LGBM), are trained in parallel. Moreover, we also 
implement K-fold cross-validation in the first layer to 
improve the generalization of the stacking process.  

Suppose in the first layers there are � basic models, 
��

�, … , ��
�, … , ��

� . The augmented samples after pre-
processing are divided into �  folds without overlapping 
randomly and the ���  validation data set is denoted as 
�� = {(��

�, ��
�), 1 ≤ � ≤ ��}, where �� is the size of each 

fold. Under the K-fold cross-validation, � − 1 folds are 
set as the training data set to train these basic models and 
the remaining one is the validation data set to output the 
estimations of basic learners. After K-fold cross-
validation, we obtain the estimation results of each fold 
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from the basic learner �� as ����,�
� , … , ���,�

� , . . , ���,�
� �. When it 

comes to evaluate the performance of testing samples, the 
output for the first layer is the average of each trained 
models with different training samples. The first layer of 
��

�  considering K-fold cross-validation is illustrated in 
Fig. 3. 

 
 

Fig. 3. K-fold cross-validation in the basic learner �� 
 

The stacking method works in the second layer to 
integrate the outputs from basic learners in the first layer. 
In order to avoid overfitting in the second layer, the 
selection of the meta learner in this layer will be relatively 
simple [13]. Thus, we use Lasso in this paper as a meta 
learner in the second layer. 

Generally, there are only two layers in the classical 
stacking methods. In this paper, we add an additional 
layer by choosing a strong learner to further improve the 
stability and effectiveness of ensemble learning 
framework. With the third layer, the final estimation 
result is obtained as 

 �� =
��

����
�

�
 (6) 

where ��  is the final estimation of the  ���  sample, ��
�  is 

the estimation of  ���  sample based on LSTM that 

considers data reweight, ��
�  is the estimation of the ��� 

sample based the stacking process in the first two layers. 
 
D. An improved LSTM considering data reweight 
 
 Traditionally, LSTM is used to capture the dynamic 
of time series by minimizing the expected loss in the 
training data set, where all the samples are of the same 
importance. However, the synthetic data generated from 
different data augmentation approaches have different 
influences on the performance of predicting the real data. 
This paper proposes an improve LSTM model to reweight 
the artificial samples.  
 Firstly, we apply an influence function to collect the 
top positive samples, following the procedure of the 
developed influence function [14]. We can then sort the 
influence values in an ascending order and collect the top 
� positive ones as influential data set, which is denoted as 

{���
I, ��

I�, 1 ≤ � ≤ �} , to facilitate the subsequent data 

reweight.  
Secondly, we will reweight the input synthetic 

sample by optimizing the prediction accuracy of the 

influential and synthetic samples. Instead of mixing 
influential and synthetic samples, the influential samples 
are applied as a validation set. The objective for the 
training model is to minimize the weighted loss in the 
synthetic data. 

In addition, to improve the prediction accuracy on 
the influential data, the optimal weights can be obtained 
by minimizing the loss on the influential data set [15]. 
 
 

III.  CASE STUDY 
 
A. Description of the case and data 
 

A data set from a real WWTP with a modified 
activated sludge process in China is applied to validate the 
prediction of sludge bulking, which is one of the most 
common failures during the operational process. Sludge 
volume index (SVI) is the health indicator to imply the 
degrading level of wastewater. 

In this case, the value of SVI is collected daily with 
213 data points. In the moving window method, the length 
of the input data � is 4, which means the previous 4-day 
SVI is applied to predict the value of the fifth day. 100 
influential samples are selected to improve the LSTM 
model. Moreover, in order to test the effectiveness of the 
proposed method, we use 80% data to generate synthetic 
data and then train the ensemble learning model, and 20% 
data is used to test the effectiveness. 

The parameters of the six augmentation methods are 
given in Table I. Besides, the LSTM used in this paper 
involves 3 BSTM layers and 2 dense layers. There are 64 
neurons in each layer. Rectified Linear Units set as the 
active function and Adaptive Moment Estimation is the 
optimization method to minimize the square loss during 
the training process. 
 

 
 
 
 
 
 
 
 

 
 
 
 
B. Performance criteria 
 

Root Mean Square Error (RMSE) and mean absolute 
percentage error (MAPE) are two criteria used in this 
paper to evaluate the effectiveness of different prediction 
methods. The RMSE is defined as follows: 

 ���� = �
�

�� �∑ (��
� − ���

�)���

��� �  (12) 

TABLE I 
PARAMETERS OF DATA AUGMENTATION METHODS 

 

Data augmentation methods Parameters 

Jittering �� ∈ {0.03,0.06,0.09} 

Scaling �� ∈ {0.05,0.10,0.15,0.20} 

Permutation �� ∈ {5,6,7,8,9} 

Magnitude wrapping �� ∈ {0.1,0.2,0.3} 
� ∈ {4,5} 

Window slicing ��� ∈ {0.5,0.6,0.7,0.8,0.9} 

Window wrapping ��� ∈ {0.05,0.10,0.15,0.2} 
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where �� is the total number of test data samples, ��
� is 

the ���  real value and ���
�  is output of the ���  estimation. 

The definition of MAPE is given as 

 ���� =
�

��
∑ �

������
�

�� ���

��� ∗ 100%  (13) 

The model performs more accurate when the values 
of RMSE and MAPE are smaller. 
 
C. Experiment results and comparison 
 

The mean and Std. of RMSE and MAPE after 
running the proposed methods 20 times are illustrated in 
TABLE Ⅱ. Moreover, the results of classical prediction 
methods, including ARIMA, SVM, LASSO, Random 
Forest Regressor (RFR), GBR, LGBM, XGB, and LSTM, 
are also given in TABLE Ⅱ. It shows that the proposed 
method outperforms compared with other commonly used 
methods. Moreover, the standability of the proposed 
method shows the best among these methods. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The detailed estimations based on different 
prediction methods are illustrated in Fig. 4. It can be 
observed that XGB, LGBM, RFR and GBR fail to predict 
the trend of the test samples. When taking the value of 
SVI 230mg/L as the failure threshold, the failure data 
point predicted by the proposed three-layer ensemble 
learning method is closest to the real failure point. 

 
 

Fig. 4. Estimations of SVI value based on different prediction methods. 

 

D. Effectiveness of data augmentation and ensemble 
learning 

 
We also conduct comparison experiments, which 

include training each basic learner, the stacking method 
involving the first two layers, the LSTM model and the 
proposed three-layer ensemble learning with the real data 
set and the augmented data set respectively. The 
estimations are given in Fig. 5 to illustrate the 
effectiveness of data augmentation. It can be seen that 
training these models with a generated synthetic data set 
can enhance the prediction accuracy significantly.  
 

 
(1) XGB 

 
(2) LGBM 

 
(3) GBR 

 
(4) Stacking method 

 
(5) LSTM 

 
(6) Three-layer ensemble learning 

 
Fig. 5. Estimations of basic learners, stacking method and three-layer 

ensemble framework trained with real data and augmented data. 
 

E. Effectiveness of ensemble learning 
 
 

We compared the RMSE and MAPE values of each 
basic learners, the stacking structure include the first two 
layers and the whole three-layer ensemble learning 
framework. Each of the experiments is trained by real 
limited data and augmented data respectively. The 
detailed results are given in Fig. 6. The results show that 
ensemble learning framework can decrease the errors 
when trained by augmented data. However, when trained 
by real data set, the performance of ensemble learning is 
worse than the LSTM model since the performance gap 
between the LSTM model and the stacking method is 
relatively large. 

  TABLE Ⅱ 
COMPARISON OF RMSE AND MAPE AMONG DIFFERENT 

PREDICTION METHODS 
 

 
Methods 

RMSE MAPE (%) 

Mean Std. Mean Std. 

ARIMA 13.1248 \ 4.6731 \ 

LASSO 13.1752 0.1938 4.6319 0.0934 

SVM 14.9113 0.6091 5.2918 0.2599 

RFR 30.4910 0.5160 11.5360 0.262 

GBR 25.1023 1.0954 8.6603 0.4772 

LGBM 30.1568 1.3502 11.3648 0.6755 

XGB 30.1681 2.0662 10.9646 0.9135 

LSTM 14.9384 0.2567 5.3520 0.0633 

Three-layer 
Ensemble 
Learning 

12.4619 0.0900 4.4070 0.0302 
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(1) With augmented data (2) With real data 

 
Fig. 6. RMSE and MAPE of XGB, LGBM. GBR, stacking method, 

LTSM and proposed ensemble learning training trained with real data 
and augmented data. 

 
F. Effectiveness of data reweight 
 

In order to verify the effectiveness of applying data 
reweight in the LSTM model, we make comparisons 
between the scenarios of applying influential samples and 
randomly selected samples. Moreover, we also adjust the 
size of influential samples and random samples from 0 to 
500. The result is shown in Fig. 5. It shows that 
reweighting according to influential samples outperform 
compared randomly selected samples, which fail to 
improve the prediction performance in most cases. 
 

 
 

Fig. 7. RMSE and MAPE of LSTM reweighted by different size of 
influential samples and random samples. 

 
 

IV.  CONCLUSION 
 
 This study aims to improve the prediction accuracy of 
health indictor based on an ensemble learning framework 
with insufficient observational data. Multi data 
augmentation methods are applied to increase the size of 
the data set. To improve the prediction accuracy, a three-
layer framework is proposed based on the stacking 
method to effectively integrate the augmented data. Multi 
basic learners are trained using augmented data set by K-
fold cross-validation methods in the first layer and then 
the second layer integrates these estimations by the 
LASSO model. In the third layer, an improved LSTM 
considering the sample reweighting is averaged with the 
output from second layer. Experiments conducted on a 
real wastewater treatment process illustrate the 
effectiveness of the proposed method. In the future work, 

we will focus on making maintenance policy considering 
the uncertainty of prediction and establishing an effective 
health management scheme for practical use. 
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