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Abstract: Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the 

leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag 

hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The 

variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow 

shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable 

blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged 

Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the 

flow field properties. The numerical method has been validated against the available experimental data in the 

open literature. The obtained results show that the L/D will drop 7~8% when R changes from 2 to 8. The lift 

coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is 

adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole 

characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii 

method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can 

improve 4~5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to 

improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is 
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the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt 

waverider can get the better aerodynamic performance.  

Keywords: hypersonic, variable, blunt, waverider, lift-to-drag ratio, counterflowing jet 

 

1 Introduction 

Interest in the development of various types of hypersonic vehicles has been kept for several decades. One 

type of vehicles that are promising for hypersonic flight is the waverider, which first proposed by Nonweiler [1] 

in 1959. Waverider is a lifting body derived from a known analytical flow field such as flow around a cone and 

designed analytically with an infinitely sharp leading edge for shock-wave attachment. The attached shock wave 

can act as a barrier in order to prevent spillage of higher-pressure airflow from the lower side of the vehicle to 

the upper side, thus generate a high lift-to-drag (L/D) at a high Mach number [2]. At the same time, the 

waverider can break the “L/D barrier” which is proposed by Kuchemann [3] for hypersonic aircrafts. Therefore, 

the waverider is a good candidate for hypersonic flight [4]-[10]. Nowadays, there have been some remarkable 

vehicles which are designed based on waverider configuration, such as X-51A [11] and HTV-2.  

However, it is extremely difficult to construct a perfectly sharp leading edge to achieve the attached 

shock-wave. Any manufacturing error will result in a significant deviation from the design contour. The sharp 

leading edge is not only difficult to maintain in the hypersonic flight condition, but also is difficult in 

manufacturing technology and impossible to achieve in practice. Thus, the leading edge should be blunt for heat 

transfer, manufacturing and handling concerns for practical hypersonic configurations [12]. Because a blunt 

leading edge promotes shock-wave standoff, shock detachment will occurs, making leading-edge blunting a 

major concern in the design and research on flowfield over hypersonic blunt waveriders. At the same time, the 

blunt leading edge will result in the drag increase, and there is a strong aero-heating along the leading edge at 
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hypersonic flight speeds. For this, many researches had been done to improve the aerodynamic performance of 

blunt waverider. The experiment that Gillum and Lewis [13] had done for AEDC waverider showed that the 

(L/D)max of waverider reduces 19.74% with the blunt leading edge. The numerical investigation of Cao and Li 

[14] also showed that bluntness has a great effect on its aerodynamic performance, especially the drag and L/D. 

And, the impact of bluntness on the aerodynamic and aero-heating performance of waverider was taken into 

account synthetically by Santos [15][16] and Chen [17][18]. Their results showed that aerodynamic performance 

and aero-heating are highly sensitive to the bluntness of waverider. Starkey [19] made a study on the 

performances of a 22m osculating cone-based waverider with different blunt radius, and the results implied that 

there could be an intermediate design point with a good balance between the vehicle aerodynamic and 

aero-heating concerns. Vanmol and Anderson [20] had defined the blunt radius varied in the span direction and 

studied the heat transfer characteristics for waverider. They suggested a formula to get the minimum leading 

edge radius based on the low density effects. Numerical and experimental studies were developed on waverider 

with blunt leading edge by Liu [21][22] at Ma=10. The aerodynamic performance and aero-heating 

characteristics for blunt waverider were also taken into account together. At the same time, Liu proposed the 

“non-uniform blunt waverider” that improve the aerodynamic performance effectively. Though the influence of 

bluntness on the performance of waverider configuration has been studied deeply, the hypersonic flight tests 

were frequently abortive in recent years, such as HTV-2. That is because of the serious aero-heating along 

leading edge. So, how to reduce the drag and aero-heating effectively is still a key aspect for blunt hypersonic 

vehicle. There are so many work need to be done about the blunt waverider before its successful application. On 

the other hand, the opposing jet at the head of blunt body is an effective method to reduce the drag and 

aero-heating [24]-[30], and Huang [31][32] gave a detailed review on the drag and heat flux reduction induced 

by the counterflowing jet and its combinations. The blunt waverider geometry in the head is similar with the 

blunt body, thus, the opposing jet will work in the part of head to achieve the drag and aero-heating reduction.  
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In order to improve the aerodynamic performance of blunt waverider, the “non-uniform blunt radii method” 

will be used in this article. More, the opposing jet will also be used in the waverider with variable blunt radii to 

improve the aerodynamic performance and aero-heating characteristics deeply. The combination of non-uniform 

blunt radii method and opposing jet in the waverider is a novel way to make the waverider having the better 

characteristics. At the same time, the work will achieve a small step for transforming ideal waverider to practical 

application. 

 

2 Design approach 

2.1 The design method for cone-derived waverider 

Waverider configurations have been constructed from axisymmetric flow fields past circular cones based on 

the theory that Kim and Rasmussen [33] provided. In the paper, the coordinate system and nomenclature are 

shown in Figure 1, and a parabolic upper surface trailing edge is given, see Eq.1. Then, the leading edge can be 

obtained along the free flow anti-direction in the shock-wave cone, according to Eq.2, and at last, the trailing 

edge curve will be generated based on the relationship between cbR  and bR∞ , see Eq.3. Where, the waverider 

configuration is decided by the following parameters: Free stream Mach Number(Ma), Semi-vertex shock 

angle(β), Dihedral angle( lφ ) and Base body length(l). The upper surface is obtained by the rules of being parallel 

to the free stream. And the lower surface is generated by tracing streamlines from leading edge to the base plane. 

2
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According to the above theory, the basic waverider configuration was obtained and is summarized in the 

Table.1. 

2.2 The variable blunt radii method 

In the article, the traditional blunt method is adopted to modify the leading edge of ideal waverider [36]. 

Different blunt radii are employed to achieve the blunt waverider with variable radius in the different position. 

The waverider configurations are classified in three types. Type 1 is the waverider with uniform blunt radius. 

Type 2 is the waverider with variable blunt radii from the head to back plane. Type 3 is the waverider with 

different blunt radii from the head to some part away from back plane and then keeping the smaller radius at a 

uniform value to the back plane, see Figure 2. Herein, Types 2 and 3 are called “Non-uniform Blunt Waveriders” 

[23].  

At the same time, the blunt leading edge is defined according to the blunt radius and the flow field 

characteristic, see Figure 2. The stagnation point is at the head of waverider, the “nosed zone” is a small zone 

around the stagnation point, and the “variable blunt radii zone” is in where the radius changes continually and 

the “uniform radius zone” is the last part of leading edge which is blunt with small radius. The blunt waverider 

will not only make the manufacture possible, but also improve the aero-heating characteristic of waverider. 

However, the stagnation point and “nosed zone” will still endure the effect of the high temperature and severe 

aero-heating. At the “variable blunt radii zone”, the temperature and heat flux will decrease sharply, and the 

aero-heating will not be obvious. This is called “transition zone” and its area will affect the tradeoff between the 

aerodynamic and aerothermodynamic characteristics. More, the “uniform radius zone” is useful to sustain the lift 

characteristic because of its small changes for the ideal waverider. Where, R is the radius of the head and r is the 
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minimum radius for the variable blunt waverider. R is the main parameter to influence the aerothermodynamic 

characteristic and affects the aerodynamic performance, especially the drag rising. Comparing with uniform 

blunt waverider, r will make up the loss of aerodynamic performance that caused by large blunt radius to some 

extent.  

2.3 The design approach of blunt waverider with opposing jet 

As we know, the opposing jet is able to change the flow field structure, then improves the aerodynamic 

characteristic of hypersonic vehicle [37]. In order to reduce the drag and aero-heating performance in the head, 

the paper adopts the opposing jet to achieve it. According to the variable blunt radii method in the previous part, 

the aperture jet will be used at the head of waverider to reduce the drag and the aero-heating in the “Nosed zone”. 

There is a different “Nosed zone” for different blunt radius, so the shape of the opposing jet will be designed 

according to the area of “Nosed zone” and the head blunt radius. The design of aperture jet is shown in Figure 3. 

Where, the Sjet is the length of jet, and h is the height of jet. R, r0, r1 and r2 are respectively the radii at the 

different positions for the blunt leading edge. L0 is the length of waverider and L1 is the length for the blended 

blunt radii zone. The geometry for the waverider configuration with variable blunt radii is shown in Figure 4.  

Based on the above methods, the different cases for different Types have been designed and the configuration 

parameters are listed in the Table 2. Herein, L0 equals lw and its value is 0.6m. 

 

3 CFD approach and numerical validation 

3.1 CFD approach 

The three-dimensional coupled implicit Reynolds Averaged Navier-Stokes(RANS) equations and the 

two-equation SST k-ω turbulence model [39][40] have been employed to numerically simulate the aerodynamic 
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characteristics which caused by the different blunt waveriders. The turbulence equations of the compressible gas 

can be described with the appropriate reference frame: 

(a) Equation of mass conservation: 
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(d) Equation of turbulent kinetic energy (k): 
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(e) Equation of the specific dissipation rate (ω): 
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Other equations: 
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In these equations, ρ , iu , P , ijτ , biF , and Q  respectively stand for the density, components velocity, 

pressure, turbulent shearing stress, body force components, and bulk heat treatment. kG , Gω , kY and Yω  are 

separately the production of turbulence kinetic energy caused by velocity gradients, the dissipation of k and  

ω  in the compressible turbulent flow and the modulus of the mean strain tensor. kS , Sω  and Dω  are 
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user-defined source terms and the cross-diffusion term. kΓ  and ωΓ  represent the effective diffusivity of k  

and ω . kσ  and ωσ  are the turbulent Prandtl numbers of k  and ω . The viscosity and thermal conductivity 

are evaluated using a mass-weighted mixing law. The equations are solved along with the density based (coupled) 

double precision solver of FLUENT [38], and the wall Prandtl number for the turbulence model is set to be 0.85 

in order to test its effect on the numerical results. The first order spatially accurate upwind scheme (SOU) with 

the advection upstream splitting method (AUSM) flux vector splitting is employed to quicken the convergence 

speed, and the Courant–Friedrichs–Levy (CFL) number is set at 0.2 at first, and then changes in solution steering 

according to the flow field. The wall is in the no-slip and isothermal boundary conditions and the temperature is 

set to be 300K. At the outflow, all the physical variables are extrapolated from the internal cells. The standard 

wall functions are introduced to model the near-wall region flow, and the air is assumed to be a thermally and 

calorically perfect gas. The solutions can be considered as converged when the residuals reach their minimum 

values after falling for more than five orders of magnitude, and the difference between the computed inflow and 

outflow mass flux is required to drop below 10-5 kg.s-1.  

At the same time, the computational domain is structured by the commercial software ICEM CFD 14.0 [35], 

and the grid is multi-blocked and highly concentrated close to the wall surfaces, and the scale for first layer mesh 

is 10-6 m in order to ensure the accuracy of the numerical simulation that will results in a suitable value of y+ for 

all of flow fields, namely its maximum value is less than 1. Figure 5 represents the sketch diagram of the grid 

system for Case 3. 

As for the boundary conditions, the inflow boundary is considered the pressure-far-field [37], and the opposing 

jet is considered the pressure inlet. The specific parameters are as shown in Table 3. The value of P0in/P0 is set to 

be 0.4 according to the Ref.[37].  
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3.2 Numerical validation 

In this section, in order to valid the credibility of the numerical methods, the opposing jet model that is derived 

from the published literature is adopted to verify the numerical method. The experiment data is also from the 

literature[26].  

The results for the numerical simulation are compared with the experimental data, see Figure 6. Figure 6(a) 

shows the comparison for density gradient contour obtained by CFD and wind tunnel experiment. Figure 6(b) 

depicts the comparison of Stanton number(St) for numerical and experimental results.  

As shown in Figure.6(a), it is obvious that the predicted shock wave stand-off distance is slightly larger than 

that obtained in the experiment. This discrepancy may be induced by the symmetric solver and turbulence model. 

However, the locations of Mach disk and the triple point are nearly the same. The St for numerical result is lower 

than that of experimental data when θ is not beyond 38.5°, and the same trend can be obtained when θ is beyond 

54.5°. And the St for numerical simulation is bigger than that of experimental data between the two angles. More, 

the variable trend of predicted St distribution is the same as that obtained by the experiment in recirculation 

region, and the positions of peak heat flux are the same, see Figure 6(b). The difference of maximum St is 10%. 

This implied that the heat flux in the supersonic flow can be obtained by the commercial software Fluent. This 

phenomenon may be caused by the differences of their cooling gases and model coefficients. 

From the above discussion, the numerical results show good agreement with the experimental data. We may 

safely draw the conclusion that the numerical method in the paper can simulate the opposing jet field well in 

supersonic flow, and the numerical results are believable in the following discussions. 
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4 Results and discussion 

In this part, the mechanism of bluntness impact on the aerodynamic and aero-heating performance is studied 

based on the variable blunt method. At the same time, the influence of aperture on the drag and aero-heating 

reduction for blunt waverider is also investigated in this article.  

In order to obtain a detailed study on the influence of opposing jet on the blunt waverider, five slices and 

curves in the vertical direction of flow are chosen to discuss the flow field characteristics, see Figure 9(a). The 

positions for different slices and curves along X direction are respectively 0.411, 0.412, 0.41337, 0.445 and 0.7. 

The beginning point of blunt leading edge(x0) is 0.41054, and the ending point of the aperture in the flow 

direction is 0.41337. At the same time, the ending position of variable blunt radius in the flow direction is 0.445. 

More, the flow characteristics in symmetry plane are also discussed, and the detailed information is as 

followings. 

Figure 7 shows the aerodynamic characteristics for different cases, and the information of all cases are listed 

in Table 2. The lift coefficients of Case 1 and Case 3 are larger than that of Case 2, and the value of Case 4 is 

smaller, see Figure 7(a). More, the drag coefficient of Case 1 is smaller than that of Case 2, and the value of Case 

3 is almost the same with that of Case 2. The drag coefficient of Case 4 is the smallest among all cases, see 

Figure 7(b). The L/D of Case 1 is the largest and it will drop 7~8% when R changes from 2mm to 8mm. Because 

the bow shock wave becomes more obvious, the drag increases. At the same time, the area of compression 

surface decreases with the increase of R, the lift decreases. More, the L/D of Case 3 is larger than that of Case 2 

and this implies that the variable blunt radii method is very useful for the improvement of aerodynamic 

characteristics. In addition, based on the comparison between cases 3 and 4, the lift and drag characteristic for 

the waverider with opposing jet is smaller, and the extent of drag reduction is larger when the opposing jet is 

used in blunt waverider, so the L/D will increase. This phenomenon shows that the aperture can improve the 
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aerodynamic performance of blunt waverider. At the same time, the combination of variable blunt radii method 

and the opposing jet for blunt waverider can make its L/D improve 4~5%, and the L/D is 5.91, see Figure 7(c). 

This shows that the opposing jet is also useful for the blunt waverider. 

Figure 8 shows the flow field characteristic analysis along the stagnation line. Herein, R8, R8(r2) and 

R8(r2-jet) are respectively cases 2, 3 and 4. The shock compression of variable blunt radii waverider is a little 

stronger than that of uniform blunt radius waverider when R keeps the same. The distance of detached shock 

wave of Case 4 will increase obviously, and the trend of Mach number behind shock wave is ‘decrease-sharply- 

increase-decrease’ along the stagnation line. When the Mach number increases, the value will be beyond 1. That 

is because the static temperature is lower in this region, and the sound velocity is lower. More, the Mach number 

of Case 4 is near zero at X=0.408, and this shows that the velocity is near zero in this position, see Figure 8(a-b). 

In addition, there is a low temperature region along stagnation line near the aperture, and the recirculation region 

in where the temperature is lower also exists around the aperture, see Figure 8(b). And the phenomenon will 

reduce the aero-heating and improve the aerothermodynamic environment effectively. The ability of shock wave 

compression is the same at the same flow condition, so the max static pressure behind the shock wave is almost 

the same and the value is near 110KPa that is 43.8times of flow static pressure. The static pressure increases 

sharply near the aperture, see Figure 8(c). That is because the static pressure of the jet is very high. 

Figure 9 shows the comparison of pressure distribution along different curves for different cases. There are 

different pressure distributions for different cases on the same slice. The pressure of case 3 is a little lower than 

that of case 2 at X=0.411 and their trends are almost the same at X=0.412, see Figure 9(b-c). However, the 

pressure of case 3 is a little higher than that of case 2 at X=0.41337, see Figure 9(d). These phenomena show that 

the blunt method has the obvious influence on the pressure. The influence of aperture on the pressure is very 

obvious at X=0.411 and the pressure of case 4 is much lower than that of cases 2 and 3. And the similar results 

can be obtained at X=0.412 and 0.41337. These phenomena show that there are the recirculation regions and low 
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pressure regions in the upper and lower surfaces near the aperture. The effect of R on the pressure distribution is 

obvious, see Figure 9(e). At the same time, the pressure is higher than those of other two cases in the upper and 

lower surfaces when X is 0.445. That is because the detached shock wave reattaches the surfaces and the 

reattachment point of shock wave behind the recirculation region appears in the near region. To some extent, we 

can know the recirculation region’s area. In addition, the pressure distribution at X=0.7 is similar for different 

cases. 

In order to know the flow field characteristics better, the contours for the different flow parameters of cases 3 

and 4 on the different planes are chosen to discuss the detail information of flow field. 

 Figure 10 shows the contours of different flow parameters on the symmetry plane, respectively Ma, Te and Pe. 

The position of detached shock wave for case 4 is farther than that of case 3 obviously, see Figure 10(a). More, 

the high temperature and pressure zone of case 4 is far away from the body, and this will result in the decrease of 

the heat flux in the wall and improve the aerothermodynamic environment. There is the optimal P0in/P0 that can 

make the detached shock wave reattach the compression surface again so that the blunt waverider can get the 

better aerodynamic performance, see Figure 10(b-c). Figure 11 shows the Mach number contour comparison of 

Cases 3 and 4 for different slices. The influence of opposing jet on the flow field is very obvious, especially at 

the position of aperture. The effect region of opposing jet decreases continually along X direction. There are the 

low Mach number regions near the upper and lower surfaces when the opposing jet is used in the blunt waverider. 

However, the phenomena do not appear in case 3. These phenomena also validate that the recirculation region 

truly exists in the whole flow field. The flow field is almost symmetry based on the center plane of the aperture 

and the aperture can improve the aerodynamic and aerothermodynamic characteristics by changing the flow field 

structure, see Figure 11 and Figure 7-8.  

Figure 12 shows the comparison of pressure distribution for cases 2, 3 and 4 on the blunt surface. Although 

the R is the same, the different blunt method has different pressure distribution on the blunt surface. The high 
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pressure region of case 3 is larger than that of case 2, and their high pressure regions both appear at the nosed 

zone, see Figure 12. The opposing jet can change the flow field structure at the nosed zone and improve the 

aerothermodynamic environment in the whole flow field. The variable blunt radii method is a good way that is 

used to improve the aerodynamic and aerothermodynamic characteristics of blunt waverider. And the aperture is 

also a novel way to improve the whole characteristics of blunt waverider. So this will be one solid step that 

making the ideal waverider to practicality.  

 

5 Conclusions 

In this article, we adopt the variable blunt radii method to modify the ideal waverider, and then add the 

opposing jet to the blunt waverider and the aperture is used to improve the waverider characteristics. According 

to the research, we have come to the following conclusions: 

 The ability of shock wave compression is the same at the same flow condition and the max static pressure 

behind the shock wave is almost the same and the value is near 110KPa that is 43.8times of flow static 

pressure.  

 The L/D of Case 1 is the largest and it will drop 7~8% when R changes from 2 to 8. The lift coefficient 

will increase and the drag coefficient almost keeps the same when the variable blunt radii method is 

adopted, and the L/D will increase, at the same time, the high pressure region will augment. 

   The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider 

and the L/D can improve 3%. The opposing jet can change the flow field structure around the nosed zone 

and improve the aerothermodynamic environment in the whole flow field. There is the optimal P0in/P0 

that can make the detached shock wave reattach the lower surface again so that the blunt waverider can 

get the better aerodynamic performance. 
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   The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole 

performance of blunt waverider, and L/D can improve 4~5%. The aperture as a novel way of opposing jet 

is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic 

characteristics of waverider in the hypersonic flow.  
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Figure 1 Cone-derived waverider theory and coordinate system 
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Figure 2 Different zones for the blunt leading edge 
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Figure 3 Design method of opposing jet for the variable blunt radii waverider 
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Figure 4 Waverider configurations with variable blunt radii 
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Figure 5 Sketch diagram of the grid system for Case 3 
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(a) Density (b) Stanton number 
Figure 6 Comparison between predicted results and experimental data 
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(a) Coefficient of Lift 

 
(b) Coefficient of Drag 

 
(c) Lift-to-Drag ratio 

Figure 7 Comparison of aerodynamic characteristics for different cases 
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(a) Ma (b) Static temperature 

 
(c) Static pressure 

Figure 8 Flow field characteristics analysis along the stagnation line 
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(a) Sketch of chosen sections (b) X=0.411 
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Figure 9 Comparison of pressure distribution along different curves for different cases 
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Figure 10 Contours of different flow parameters for cases 3 and 4 on the symmetry plane  
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Figure 11 Comparison of Ma contour for cases 3 and 4 on different slices  
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Figure 12 Comparison of pressure distribution for cases 2, 3 and 4 on the blunt surface 
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Table 1 Design parameters for cone-derived waverider  

Design parameters Values 

Ma 8 

β(°) 13.5 

lφ (°) 50 

l (m) 1.0 

lw (m) 0.6 
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Table 2 Configuration parameters for different cases  

Schemes L1/L0 R/L0 r0/R r1/r0 Sjet/Sleading h/R 

Case 1 
/ 

0.00033 
/ / 

/ / Case 2 

0.00133 Case 3 
0.06 0.25 1.0 

Case 4 0.0086 0.25 
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Table 3 Boundary conditions for numerical simulation 

Pressure-far-field Pressure inlet Wall 

Perfect gas air 

Tw=300K 
Ma=6.0 Main=1.0 

Pe=2511.01Pa P0in=0.4* P0 

Te=221.65K Tein=300K 
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