153 research outputs found

    Thermodynamic and kinetic study of CO2 adsorption/desorptionon amine-functionalized sorbents

    Get PDF
    The thermodynamic and kinetic characteristics of CO2 adsorption of SBA-16 loaded with pentaethylenehexamine (PEHA) have been investigated using adsorption column system. The Langmuir isotherm model fitts the CO2 adsorption isotherms well, and the average isosteric heat of adsorption is 59.6 kJ/mol, indicating that the CO2 adsorption on PEHA-loaded SBA-16 is chemisorption. The Avrami fractional dynamics model is very suitable for illustrating the adsorption behaviour of CO2 adsorption, and the results of kinetic analysis show that increasing the partial pressure of CO2 or the working temperature is beneficial to the adsorption of CO2. Three desorption methods were evaluatedto achieve the optimal desorption method. The results show that VTSA and steam stripping method are effective methods for industrial CO2 desorption. Steam stripping may be more suitable for plants that already have low-cost steam. The activation energy Ea of CO2 adsorption/desorption is calculated using Arrhenius equation. The activation energy Ea of CO2 adsorption/desorption was calculated using the Arrhenius equation. The results show that the absolute value of Ea (adsorption) decreases with the increase of CO2 partial pressure. In addition, the Ea value of vacuum rotary regeneration method and steam stripping method is smaller than the Ea value of temperature swing regeneration

    Thermodynamic and kinetic study of CO2 adsorption/desorptionon amine-functionalized sorbents

    Get PDF
    473-482The thermodynamic and kinetic characteristics of CO2 adsorption of SBA-16 loaded with pentaethylenehexamine (PEHA) have been investigated using adsorption column system. The Langmuir isotherm model fitts the CO2 adsorption isotherms well, and the average isosteric heat of adsorption is 59.6 kJ/mol, indicating that the CO2 adsorption on PEHA-loaded SBA-16 is chemisorption. The Avrami fractional dynamics model is very suitable for illustrating the adsorption behaviour of CO2 adsorption, and the results of kinetic analysis show that increasing the partial pressure of CO2 or the working temperature is beneficial to the adsorption of CO2. Three desorption methods were evaluatedto achieve the optimal desorption method. The results show that VTSA and steam stripping method are effective methods for industrial CO2 desorption. Steam stripping may be more suitable for plants that already have low-cost steam. The activation energy Ea of CO2 adsorption/desorption is calculated using Arrhenius equation. The activation energy Ea of CO2 adsorption/desorption was calculated using the Arrhenius equation. The results show that the absolute value of Ea (adsorption) decreases with the increase of CO2 partial pressure. In addition, the Ea value of vacuum rotary regeneration method and steam stripping method is smaller than the Ea value of temperature swing regeneration

    AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion correction of multi-slice fetal brain MRI

    Full text link
    Multi-slice magnetic resonance images of the fetal brain are usually contaminated by severe and arbitrary fetal and maternal motion. Hence, stable and robust motion correction is necessary to reconstruct high-resolution 3D fetal brain volume for clinical diagnosis and quantitative analysis. However, the conventional registration-based correction has a limited capture range and is insufficient for detecting relatively large motions. Here, we present a novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM) correction of the multi-slice fetal brain MRI. It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion, which resembles the iterations between slice-to-volume registration and volumetric reconstruction in the regular pipeline. The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data, with a 48.4% reduction of mean absolute error for rotation and 61.3% for displacement. We then incorporated AFFIRM into the multi-resolution slice-to-volume registration and tested it on the real-world fetal MRI scans at different gestation stages. The results indicated that adding AFFIRM to the conventional pipeline improved the success rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%

    Growth of tomato and cucumber seedlings under different light environments and their development after transplanting

    Get PDF
    Selecting suitable light conditions according to the plant growth characteristics is one of the important approaches to cultivating high-quality vegetable seedlings. To determine the more favorable LED light conditions for producing high-quality tomato and cucumber seedlings in plant factories with artificial light (PFALS), the growth characteristics of tomato and cucumber seedlings under seven LED light environments (CK, B, UV-A, FR, B+UV-A, UV-A+FR, and B+FR) and the development of these seedlings after transplanting into a plastic greenhouse were investigated. The results showed that the seedling height and hypocotyl length increased in treatments with far-red light supplementation (FR, UV-A+FR, and B+FR), but decreased in the B treatment, in both varieties. The seedling index of tomato seedlings increased in the B+UV-A treatment, while that of cucumber seedlings increased in the FR treatment. After transplanting into a plastic greenhouse, tomato plants that radiated with UV-A had greater flower numbers on the 15th day after transplanting. In cucumber plants of the FR treatment, the flowering time was significantly delayed, and the female flower exhibited at a lower node position. By using a comprehensive scoring analysis of all detected indicators, light environments with UV-A and FR were more beneficial for improving the overall quality of tomato and cucumber seedlings, respectively

    Staged surgical treatment for severe and rigid scoliosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A retrospective study of staged surgery for severe rigid scoliosis. The purpose of this study was to evaluate the result of staged surgery in treatment of severe rigid scoliosis and to discuss the indications.</p> <p>Methods</p> <p>From 1998 to 2006, 21 cases of severe rigid scoliosis with coronal Cobb angle more than 80° were treated by staged surgeries including anterior release and halo-pelvic traction as first stage surgery and posterior instrumentation and spinal fusion as second stage. Pedicle subtraction osteotomy(PSO) was added in second stage according to spine rigidity. Among the 21 patients, 8 were male and 13 female with an average age of 15.3 years (rang from 4 to 23 years). The mean pre-operative Cobb angle was 110.5° (80°-145°) with a mean spine flexibility of 13%. Radiological parameters at different operative time points were analyzed (mean time of follow-up: 51 months).</p> <p>Results</p> <p>External appearance of all patients improved significantly. The average correction rate was 65.2% (ranging from 39.8% to 79.5%) with mean correction loss of 2.23° at the end of follow-up. No decompensation of trunk has been found. Mean distance between the midline of C7 and midsacral line was 1.19 cm ± 0.51. Two patients had neurological complications: one patient had motor deficit and recovered incompletely.</p> <p>Conclusion</p> <p>Staged operation and halo-pelvic traction offer a safe and effective way in treatment of severe rigid scoliosis. Patients whose Cobb angle was more than 80° and the flexibility of the spine was less than 20% should be treated in this way, and those whose flexibility of the spine was less than 10% and the Cobb angle remained more than 70° after 1st stage anterior release and halo-pelvic traction should undergo pedicle subtraction osteotomy (PSO) in the second surgery.</p

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    The striatum multiplexes contextual and kinematic information to constrain motor habits execution

    Get PDF
    International audienceThe striatum is required for the acquisition of procedural memories, but its contribution to motor control once learning has occurred is unclear. We created a task in which rats learned a difficult motor sequence characterized by fine-tuned changes in running speed adjusted to spatial and temporal constraints. After training and extensive practice, we found that the behavior was habitual, yet tetrode recordings in the dorsolateral striatum (DLS) revealed continuous integrative representations of running speed, position and time. These representations were weak in naive rats that were hand-guided to perform the same sequence and developed slowly after learning. Finally, DLS inactivation in well-trained animals preserved the structure of the sequence while increasing its trial-by-trial variability. We conclude that, after learning, the DLS continuously integrates task-relevant information to constrain the execution of motor habits. Our results provide a straightforward mechanism by which the basal ganglia may contribute to habit formation and motor control
    corecore