2,214 research outputs found

    Three-phase optimal power flow for smart grids by iterative nonsmooth optimization

    Full text link
    © 2017 by SCITEPRESS Science and Technology Publications, Lda. All Rights Reserved. Optimal power flow is important for operation and planning of smart grids. The paper considers the so called unbalanced thee-phase optimal power flow problem (TOPF) for smart grids, which involves multiple quadratic equality and indefinite quadratic inequality constraints to model the bus interconnections, hardware capacity and balance between power demand and supply. The existing Newton search based or interior point algorithms are often trapped by a local optimum while semidefinite programming relaxation (SDR) even fails to locate a feasible point. Following our previously developed nonsmooth optimization approach, computational solution for TOPF is provided. Namely, an iterative procedure for generating a sequence of improved points that converges to an optimal solution, is developed. Simulations for TOPF in unbalanced distributed networks are provided to demonstrate the practicability and efficiency of our approach

    Multiple matrix rank constrained optimization for optimal power flow over large scale transmission networks

    Full text link
    © Copyright 2016 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved. The optimal power flow (OPF) problem for power transmission networks is an NP-hard optimization problem with numerous quadratic equality and indefinite quadratic inequality constraints on bus voltages. The existing nonlinear solvers often fail in yielding a feasible solution. In this paper, we follow our previously developed nonsmooth optimization approach to address this difficult large-scale OPF problem, which is an iterative process to generate a sequence of improved solutions that converge to an optimal solution. Each iteration calls an SDP of a moderate dimension. Intensive simulations for OPF over networks with a large number of buses are provided to demonstrate the efficiency of our approach

    PMU Placement Optimization for Efficient State Estimation in Smart Grid

    Full text link
    © 1983-2012 IEEE. This paper investigates phasor measurement unit (PMU) placement for informative state estimation in smart grid by incorporating various constraints for observability. Observability constitutes an important property for PMU placement to characterize the depth of the buses' reachability by the placed PMUs, but addressing it solely by binary linear programming as in many works still does not guarantee a good estimate for the grid state. Some existing works have considered optimization of some estimation indices by ignoring the observability requirements for computational ease and thus potentially lead to trivial results such as acceptance of the estimate for an unobserved state component as its unconditional mean. In this work, the PMU placement optimization problem is considered by minimizing the mean squared error or maximizing the mutual information between the measurement output and grid state subject to observability constraints, which incorporate operating conditions such as presence of zero injection buses, contingency of measurement loss, and limitation of communication channels per PMU. The proposed design is thus free from the fundamental shortcomings in the existing PMU placement designs. The problems are posed as large scale binary nonlinear optimization problems involving thousands of binary variables, for which this paper develops efficient algorithms for computational solutions. Their performance is analyzed in detail through numerical examples on large scale IEEE power networks. The solution method is also shown to be extendable to AC power flow models, which are formulated by nonlinear equations

    Model predictive control for on–off charging of electrical vehicles in smart grids

    Full text link
    Over the next decade, a massive number of plug‐in electric vehicles (PEVs) will need to be integrated into current power grids. This is likely to give rise to unmanageable fluc-tuations in power demand and unacceptable deviations in voltage. These negative impacts are difficult to mitigate because PEVs connect and disconnect from the grid randomly and each type of PEVs has different charging profiles. This paper presents a solution to these problems that involves coordination of power grid control and PEV charging. The proposed strategy minimises the overall costs of charging and power generation in meeting future increases in PEV charging demand and the operational constraints of the power grid. The solution is based on an on–off PEV charging strategy that is easy and convenient to implement online. The joint coordination problem is formulated by a mixed integer non‐linear programming (MINP) with binary charging and continuous voltage variables and is solved by a highly novel computational algorithm. Its online implementation is based on a new model predictive control method that is free from prior assumptions about PEVs' arrival and charging information. Comprehensive simu-lations are provided to demonstrate the efficiency and practicality of the proposed methods

    The Human Fungal Pathogen Cryptococcus neoformans Escapes Macrophages by a Phagosome Emptying Mechanism That Is Inhibited by Arp2/3 Complex-Mediated Actin Polymerisation

    Get PDF
    The lysis of infected cells by disease-causing microorganisms is an efficient but risky strategy for disseminated infection, as it exposes the pathogen to the full repertoire of the host's immune system. Cryptococcus neoformans is a widespread fungal pathogen that causes a fatal meningitis in HIV and other immunocompromised patients. Following intracellular growth, cryptococci are able to escape their host cells by a non-lytic expulsive mechanism that may contribute to the invasion of the central nervous system. Non-lytic escape is also exhibited by some bacterial pathogens and is likely to facilitate long-term avoidance of the host immune system during latency. Here we show that phagosomes containing intracellular cryptococci undergo repeated cycles of actin polymerisation. These actin ‘flashes’ occur in both murine and human macrophages and are dependent on classical WASP-Arp2/3 complex mediated actin filament nucleation. Three dimensional confocal imaging time lapse revealed that such flashes are highly dynamic actin cages that form around the phagosome. Using fluorescent dextran as a phagosome membrane integrity probe, we find that the non-lytic expulsion of Cryptococcus occurs through fusion of the phagosome and plasma membranes and that, prior to expulsion, 95% of phagosomes become permeabilised, an event that is immediately followed by an actin flash. By using pharmacological agents to modulate both actin dynamics and upstream signalling events, we show that flash occurrence is inversely related to cryptococcal expulsion, suggesting that flashes may act to temporarily inhibit expulsion from infected phagocytes. In conclusion, our data reveal the existence of a novel actin-dependent process on phagosomes containing cryptococci that acts as a potential block to expulsion of Cryptococcus and may have significant implications for the dissemination of, and CNS invasion by, this organism.\ud \u

    Common variants in FOXP1 are associated with generalized vitiligo

    Get PDF
    In a recent genome-wide association study of generalized vitiligo, we identified ten confirmed susceptibility loci. By testing additional loci that showed suggestive association in the genome-wide study, using two replication cohorts of European descent, we observed replicated association of generalized vitiligo with variants at 3p13 encompassing FOXP1 (rs17008723, combined P = 1.04 × 10−8) and with variants at 6q27 encompassing CCR6 (rs6902119, combined P = 3.94 × 10−7)

    Controllable Synthesis of Magnesium Oxysulfate Nanowires with Different Morphologies

    Get PDF
    One-dimensional magnesium oxysulfate 5Mg(OH)2 · MgSO4 · 3H2O (abbreviated as 513MOS) with high aspect ratio has attracted much attention because of its distinctive properties from those of the conventional bulk materials. 513MOS nanowires with different morphologies were formed by varying the mixing ways of MgSO4 · 7H2O and NH4OH solutions at room temperature followed by hydrothermal treatment of the slurries at 150 °C for 12 h with or without EDTA. 513MOS nanowires with a length of 20–60 μm and a diameter of 60–300 nm were prepared in the case of double injection (adding MgSO4 · 7H2O and NH4OH solutions simultaneously into water), compared with the 513MOS with a length of 20–30 μm and a diameter of 0.3–1.7 μm in the case of the single injection (adding MgSO4 · 7H2O solution into NH4OH solution). The presence of minor amount of EDTA in the single injection method led to the formation of 513MOS nanowires with a length of 100–200 μm, a diameter of 80–200 nm, and an aspect ratio of up to 1000. The analysis of the experimental results indicated that the hydrothermal solutions with a lower supersaturation were favorable for the preferential growth of 513MOS nanowires along b axis

    Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells

    Get PDF
    Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (lambda < 450 nm) to photons of longer wavelength (lambda > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the shortwavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300-450 nm) to diminish the severe surface recombination that occurs in c-Si NWSCs. The developed Ir(III) complexes can be considered promising energy converters because they exhibit superior intrinsic properties such as a high quantum yield, a large Stokes shift, a long exciton diffusion length in crystalline film, and a reproducible synthetic procedure. Using the developed 1011) complexes, highly crystalline energy downshifting layers were fabricated by ultrasonic spray deposition to enhance the photoluminescence efficiency by increasing the radiative decay. With the optimized energy downshifting layer, our 1cm(2) c-Si NWSCs with Ir(III) complexes exhibited a higher IQE value for short-wavelength light (300-450 nm) compared with that of bare Si NWSCs without Ir(III) complexes, resulting in a notable increase in the short-circuit current density (from 34.4 mA.cm(-2) to 36.5 mA.cm(-2) )

    Motivational gamification strategies rooted in self-determination theory for social adaptive E-Learning.

    Get PDF
    This study uses gamification as the carrier of understanding the motivational benefits of applying the Self-Determination Theory (SDT) in social adaptive e-learning, by proposing motivational gamification strategies rooted in SDT, as well as developing and testing these strategies. Results show high perceived motivation amongst the students, and identify a high usability of the implementation, which supports the applicability of the proposed approach

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments
    corecore