45 research outputs found

    Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV+H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV+H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV+H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-Îł secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses

    Complete genome sequence of a sub-subgenotype 2.1i isolate of classical swine fever virus from China

    Get PDF
    Citation: Zhang, B., Mi, S., Bao, F., Guo, H., Tu, C., Shi, J., & Gong, W. (2017). Complete genome sequence of a sub-subgenotype 2.1i isolate of classical swine fever virus from China. Genome Announcements, 5(14). doi:10.1128/genomeA.00127-17The complete genome sequence of a sub-subgenotype 2.1i isolate of classical swine fever virus (CSFV), GD317/2011, was determined. Notably, GD317/2011 is distant from the sub-subgenotype 2.1b isolate HEBZ at genes of Erns, E1, E2, P7, NS2, NS5A and the 3=-nontranslated region (3=-NTR) but is closely related to that at genes of Npro, Core, NS3, NS4A, NS4B, and NS5B. © 2017 Zhang et al

    Development of a Self-Emulsifying Adjuvant for Use in Swine Vaccines

    Get PDF
    Emulsion-based adjuvants are commonly used in animal vaccine formulations for several reasons including affordability, stability, and efficacy in inducing disease-protecting immune responses. Here we report a novel, cost-effective, stable, self-emulsifying adjuvant (SEA1) that is prepared by a simple low shear process or low-energy mixing without the use of expensive and complex proprietary equipment. Characterization of the SEA1 adjuvant showed good stability at different temperatures (4°C, 20°C, and 37°C) after one month of storage. Minimal changes in droplet size distribution, polydispersity index, Zeta potential and pH in 1-month-old SEA1 preparations were observed when compared with a fresh SEA1 preparation. SEA1 emulsion-based experimental vaccine preparations effectively stimulated humoral immunoglobulin (IgG) responses in mice and swine and were comparable to commercially available adjuvants Montanide ISA 201 and 206

    Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors

    Get PDF
    Citation: Huang, C., Du, Y. P., Yu, Z. B., Zhang, Q., Liu, Y. H., Tang, J., . . . Feng, W. H. (2016). Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors. Scientific Reports, 6, 13. https://doi.org/10.1038/srep28497Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms

    Genome Sequence of a Virulent African Swine Fever Virus Isolated in 2020 from a Domestic Pig in Northern Vietnam

    Get PDF
    This study reports the genome sequence of an isolated African swine fever (ASF) virus (VNUA-ASFV-05L1/HaNam) obtained at the fourth passage on pulmonary alveolar macrophages. The virus was isolated during a typical acute ASF outbreak in pigs in a northern province of Vietnam in 2020

    Serum Metabolomic Profiling of Piglets Infected with Virulent Classical Swine Fever Virus

    Get PDF
    Citation: Gong, W. J., Jia, J. J., Zhang, B. K., Mi, S. J., Zhang, L., Xie, X. M., . . . Tu, C. C. (2017). Serum Metabolomic Profiling of Piglets Infected with Virulent Classical Swine Fever Virus. Frontiers in Microbiology, 8, 14. doi:10.3389/fmicb.2017.00731Classical swine fever (CSF) is a highly contagious swine infectious disease and causes significant economic losses for the pig industry worldwide. The objective of this study was to determine whether small molecule metabolites contribute to the pathogenesis of CSF. Birefly, serum metabolomics of CSFV Shimen strain-infected piglets were analyzed by ultraperformance liquid chromatography/electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) in combination with multivariate statistical analysis. In CSFV-infected piglets at days 3 and 7 post-infection changes were found in metabolites associated with several key metabolic pathways, including tryptophan catabolism and the kynurenine pathway, phenylalanine metabolism, fatty acid and lipid metabolism, the tricarboxylic acid and urea cycles, branched-chain amino acid metabolism, and nucleotide metabolism. Several pathways involved in energy metabolism including fatty acid biosynthesis and beta-oxidation, branched-chain amino acid metabolism, and the tricarboxylic acid cycle were significantly inhibited. Changes were also observed in several metabolites exclusively associated with gut microbiota. The metabolomic profiles indicate that CSFV-host gut microbiome interactions play a role in the development of CSF

    Pigs immunized with Chinese highly pathogenic PRRS virus modified live vaccine are protected from challenge with North American PRRSV strain NADC-20

    Get PDF
    AbstractModified live virus (MLV) vaccines developed to protect against PRRSV circulating in North America (NA) offer limited protection to highly pathogenic (HP) PRRSV strains that are emerging in Asia. MLV vaccines specific to HP-PRRSV strains commercially available in China provide protection to HP-PRRSV; however, the efficacy of these HP-PRRSV vaccines to current circulating NA PRRS viruses has not been reported. The aim of this study is to investigate whether pigs vaccinated with attenuated Chinese HP-PRRSV vaccine (JXA1-R) are protected from infection by NA PRRSV strain NADC-20. We found that pigs vaccinated with JXA1-R were protected from challenges with HV-PRRSV or NADC-20 as shown by fewer days of clinical fever, reduced lung pathology scores, and lower PRRS virus load in the blood. PRRSV-specific antibodies, as measured by IDEXX ELISA, appeared one week after vaccination and virus neutralizing antibodies were detected four weeks post vaccination. Pigs vaccinated with JXA1-R developed broadly neutralizing antibodies with high titers to NADC-20, JXA1-R, and HV-PRRSV. In addition, we also found that IFN-α and IFN-β occurred at higher levels in the lungs of pigs vaccinated with JXA1-R. Taken together, our studies provide the first evidence that JXA1-R can confer protection in pigs against the heterologous NA PRRSV strain NADC-20

    Structural and functional analysis of the pro-domain of human cathelicidin, LL-37

    Get PDF
    Cathelicidins form a family of small host defense peptides distinct from another class of cationic antimicrobial peptides, the defensins. They are expressed as large precursor molecules with a highly conserved pro-domain known as the cathelin-like domain (CLD). CLDs have high degrees of sequence homology to cathelin, a protein isolated from pig leukocytes and belonging to the cystatin family of cysteine protease inhibitors. In this report, we describe for the first time the X-ray crystal structure of the human CLD (hCLD) of the sole human cathelicidin, LL-37. The structure of hCLD, determined at 1.93 Ă… resolution, shows the cystatin-like fold and is highly similar to the structure of the CLD of the pig cathelicidin, protegrin-3. We assayed the in vitro antibacterial activities of hCLD, LL-37 and the precursor form, pro-cathelicidin (also known as hCAP18), and we found that the unprocessed protein inhibited the growth of Gramnegative bacteria with efficiencies comparable to the mature peptide, LL-37. In addition, the antibacterial activity of LL-37 was not inhibited by hCLD intermolecularly, since exogenously added hCLD had no effect on the bactericidal activity of the mature peptide. hCLD itself lacked antimicrobial function and did not inhibit the cysteine protease, cathepsin L. Our results contrast with previous reports of hCLD activity. A comparative structural analysis between hCLD and the cysteine protease inhibitor stefin A showed why hCLD is unable to function as an inhibitor of cysteine proteases. In this respect, the cystatin scaffold represents an ancestral structural platform from which proteins evolved divergently, with some losing inhibitory functions

    A neutralizing monoclonal antibody-based competitive ELISA for classical swine fever C-strain post–vaccination monitoring

    Get PDF
    Background: Virus neutralization test (VNT) is widely used for serological survey of classical swine fever (CSF) and efficacy evaluation of CSF vaccines. However, VNT is a time consuming procedure that requires cell culture and live virus manipulation. C-strain CSF vaccine is the most frequently used vaccine for CSF control and prevention. In this study, we presented a neutralizing monoclonal antibody (mAb) based competitive enzyme-linked immunosorbent assay (cELISA) with the emphasis on the replacement of VNT for C-strain post–vaccination monitoring. Results: One monoclonal antibody (6B211) which has potent neutralizing activity against C-strain was generated. A novel cELISA was established and optimized based on the strategy that 6B211 can compete with C-strain induced neutralizing antibodies in pig serum to bind capture antigen C-strain E2. By testing C-strain VNT negative pig sera (n = 445) and C-strain VNT positive pig sera (n = 70), the 6B211 based cELISA showed 100% sensitivity (95% confidence interval: 94.87 to 100%) and 100% specificity (95% confidence interval: 100 to 100%). The C-strain antibody can be tested in pigs as early as 7 days post vaccination with the cELISA. By testing pig sera (n = 139) in parallel, the cELISA showed excellent agreement (Kappa = 0.957) with VNT. The inhibition rate of serum samples in the cELISA is highly correlated with their titers in VNT (r2 = 0.903, p < 0.001). In addition, intra- and inter-assays of the cELISA exhibited acceptable repeatability with low coefficient of variations (CVs). Conclusions: This novel cELISA demonstrated excellent agreement and high level correlation with VNT. It is a reliable tool for sero-monitoring of C-strain vaccination campaign because it is a rapid, simple, safe and cost effective assay that can be used to monitor vaccination-induced immune response at the population level.info:eu-repo/semantics/publishedVersio

    Comparison of host immune responses to homologous and heterologous type II porcine reproductive and respiratory syndrome virus (PRRSV) challenge in vaccinated and unvaccinated pigs

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) is a high-consequence animal disease with current vaccines providing limited protection from infection due to the high degree of genetic variation of field PRRS virus. Therefore, understanding host immune responses elicited by different PRRSV strains will facilitate the development of more effective vaccines. Using IngelVac modified live PRRSV vaccine (MLV), its parental strain VR-2332, and the heterologous KS-06-72109 strain (a Kansas isolate of PRRSV), we compared immune responses induced by vaccination and/or PRRSV infection. Our results showed that MLV can provide complete protection from homologous virus (VR-2332) and partial protection from heterologous (KS-06) challenge. The protection was associated with the levels of PRRSV neutralizing antibodies at the time of challenge, with vaccinated pigs having higher titers to VR-2332 compared to KS-06 strain. Challenge strain did not alter the cytokine expression profiles in the serum of vaccinated pigs or subpopulations of T cells. However, higher frequencies of IFN-Îł-secreting PBMCs were generated from pigs challenged with heterologous PRRSV in a recall response when PBMCs were re-stimulated with PRRSV. Thus, this study indicates that serum neutralizing antibody titers are associated with PRRSV vaccination-induced protection against homologous and heterologous challenge
    corecore