271 research outputs found

    Propagation of solitary waves through signicantly curved shallow water channels

    Get PDF
    Propagation of solitary waves in curved shallow water channels of constant depth and width is investigated by carrying out numerical simulations based on the generalized weakly nonlinear and weakly dispersive Boussinesq model. The objective is to investigate the effects of channel width and bending sharpness on the transmission and reflection of long waves propagating through significantly curved channels. Our numerical results show that, when travelling through narrow channel bends including both smooth and sharp-cornered 90°-bends, a solitary wave is transmitted almost completely with little reflection and scattering. For wide channel bends, we find that, if the bend is rounded and smooth, a solitary wave is still fully transmitted with little backward reflection, but the transmitted wave will no longer preserve the shape of the original solitary wave but will disintegrate into several smaller waves. For solitary waves travelling through wide sharp-cornered 90°-bends, wave reflection is seen to be very significant, and the wider the channel bend, the stronger the reflected wave amplitude. Our numerical results for waves in sharp-cornered 90°-bends revealed a similarity relationship which indicates that the ratios of the transmitted and reflected wave amplitude, excess mass and energy to the original wave amplitude, mass and energy all depend on one single dimensionless parameter, namely the ratio of the channel width b to the effective wavelength [lambda][sub]e. Quantitative results for predicting wave transmission and reflection based on b/[lambda][sub]e are presented

    Augmented reality-based visual-haptic modeling for thoracoscopic surgery training systems

    Get PDF
    Background: Compared with traditional thoracotomy, video-assisted thoracoscopic surgery (VATS) has less minor trauma, faster recovery, higher patient compliance, but higher requirements for surgeons. Virtual surgery training simulation systems are important and have been widely used in Europe and America. Augmented reality (AR) in surgical training simulation systems significantly improve the training effect of virtual surgical training, although AR technology is still in its initial stage. Mixed reality has gained increased attention in technology-driven modern medicine but has yet to be used in everyday practice. Methods: This study proposed an immersive AR lobectomy within a thoracoscope surgery training system, using visual and haptic modeling to study the potential benefits of this critical technology. The content included immersive AR visual rendering, based on the cluster-based extended position-based dynamics algorithm of soft tissue physical modeling. Furthermore, we designed an AR haptic rendering systems, whose model architecture consisted of multi-touch interaction points, including kinesthetic and pressure-sensitive points. Finally, based on the above theoretical research, we developed an AR interactive VATS surgical training platform. Results: Twenty-four volunteers were recruited from the First People's Hospital of Yunnan Province to evaluate the VATS training system. Face, content, and construct validation methods were used to assess the tactile sense, visual sense, scene authenticity, and simulator performance. Conclusions: The results of our construction validation demonstrate that the simulator is useful in improving novice and surgical skills that can be retained after a certain period of time. The video-assisted thoracoscopic system based on AR developed in this study is effective and can be used as a training device to assist in the development of thoracoscopic skills for novices

    First mitochondrial genome of subfamily Julodinae (Coleoptera, Buprestidae) with its phylogenetic implications

    Get PDF
    Complete mitochondrial genomes of three species of the family Buprestidae were sequenced, annotated, and analyzed in this study. To explore the mitogenome features of the subfamily Julodinae and verify its phylogenetic position, the complete mitogenome of Julodis variolaris was sequenced and annotated. The complete mitogenomes of Ptosima chinensis and Chalcophora japonica were also provided for the phylogenetic analyses within Buprestidae. Compared to the known mitogenomes of Buprestidae species varied from 15,499 bp to 16,771 bp in length, three newly sequenced mitogenomes were medium length (15,759–16,227 bp). These mitogenomes were encoded 37 typical mitochondrial genes. Among the three studied mitogenomes, Leu2 (L2), Ser2 (S2), and Pro (P) were the three most frequently encoded amino acids. Within the Buprestidae, the heterogeneity in sequence divergences of Agrilinae was highest, whereas the sequence homogeneity of Chrysochroinae was highest. Moreover, phylogenetic analyses were performed based on nucleotide matrix (13 PCGs + 2 rRNAs) among the available sequenced species of Buprestidae using Bayesian Inference and Maximum Likelihood methods. The results showed that the Julodinae was closely related to the subfamily Polycestinae. Meanwhile, the genera Melanophila, Dicerca, and Coomaniella were included in Buprestinae, which was inconsistent with the current classification system of Buprestidae. These results could contribute to further studies on genetic diversity and phylogeny of Buprestidae

    The Complete Mitochondrial Genome and Novel Gene Arrangement of the Unique-Headed Bug Stenopirates sp. (Hemiptera: Enicocephalidae)

    Get PDF
    Many of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we report the mitochondrial genome of the unique-headed bug Stenopirates sp., the first mitochondrial genome sequenced from Enicocephalomorpha. The Stenopirates sp. mitochondrial genome is a typical circular DNA molecule of 15, 384 bp in length, and contains 37 genes and a large non-coding fragment. The gene order differs substantially from other known insect mitochondrial genomes, with rearrangements of both tRNA genes and protein-coding genes. The overall AT content (82.5%) of Stenopirates sp. is the highest among all the known heteropteran mitochondrial genomes. The strand bias is consistent with other true bugs with negative GC-skew and positive AT-skew for the J-strand. The heteropteran mitochondrial atp8 exhibits the highest evolutionary rate, whereas cox1 appears to have the lowest rate. Furthermore, a negative correlation was observed between the variation of nucleotide substitutions and the GC content of each protein-coding gene. A microsatellite was identified in the putative control region. Finally, phylogenetic reconstruction suggests that Enicocephalomorpha is the sister group to all the remaining Heteroptera

    Comparative Mitogenomic Analysis of Damsel Bugs Representing Three Tribes in the Family Nabidae (Insecta: Hemiptera)

    Get PDF
    BACKGROUND: Nabidae, a family of predatory heteropterans, includes two subfamilies and five tribes. We previously reported the complete mitogenome of Alloeorhynchus bakeri, a representative of the tribe Prostemmatini in the subfamily Prostemmatinae. To gain a better understanding of architecture and evolution of mitogenome in Nabidae, mitogenomes of five species representing two tribes (Gorpini and Nabini) in the subfamily Nabinae were sequenced, and a comparative mitogenomic analysis of three nabid tribes in two subfamilies was carried out. METHODOLOGY/PRINCIPAL FINDINGS: Nabid mitogenomes share a similar nucleotide composition and base bias, except for the control region, where differences are observed at the subfamily level. In addition, the pattern of codon usage is influenced by the GC content and consistent with the standard invertebrate mitochondrial genetic code and the preference for A+T-rich codons. The comparison among orthologous protein-coding genes shows that different genes have been subject to different rates of molecular evolution correlated with the GC content. The stems and anticodon loops of tRNAs are extremely conserved, and the nucleotide substitutions are largely restricted to TψC and DHU loops and extra arms, with insertion-deletion polymorphisms. Comparative analysis shows similar rates of substitution between the two rRNAs. Long non-coding regions are observed in most Gorpini and Nabini mtDNAs in-between trnI-trnQ and/or trnS2-nad1. The lone exception, Nabis apicalis, however, has lost three tRNAs. Overall, phylogenetic analysis using mitogenomic data is consistent with phylogenies constructed mainly form morphological traits. CONCLUSIONS/SIGNIFICANCE: This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the family Nabidae. Nucleotide diversity and mitogenomic traits are phylogenetically informative at subfamily level. Furthermore, inclusion of a broader range of samples representing various taxonomic levels is critical for the understanding of mitogenomic evolution in damsel bugs

    Snoring, Inflammatory Markers, Adipokines and Metabolic Syndrome in Apparently Healthy Chinese

    Get PDF
    OBJECTIVE: Chronic low-grade inflammation and adipokines dysregulation are linked to mechanisms underscoring the pathogenesis of obesity-related metabolic disorders. Little is known about roles of these cytokines on the association between snoring and metabolic syndrome (MetS). We aimed to investigate whether a cluster of cytokines are related to snoring frequency and its association with MetS in apparently healthy Chinese. METHODS: Current analyses used a population-based sample including 1059 Shanghai residents aged 35-54 years. Self-reported snoring frequency was classified as never, occasionally and regularly. Fasting plasma glucose, lipid profile, insulin, C-reactive protein, interleukin-6, interleukin-18, lipopolysaccharide binding protein, high-molecular-weight adiponectin and leptin were measured. MetS was defined by the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian-Americans. RESULTS: Overweight/obese subjects had significantly higher prevalence of regular snorers than their normal-weight counterparts (34.8% vs. 11.5%, P<0.001). Regular snoring was associated with unfavorable profile of inflammatory markers and adipokines. However, those associations were abolished after adjustment for body mass index (BMI) or waist circumference. The MetS risk (multivariate-adjusted odds ratio 5.41, 95% confidence interval 3.72-7.88) was substantially higher in regular snorers compared with non-snorers. Controlling for BMI remarkably attenuated the association (2.03, 1.26-3.26), while adjusting for inflammatory markers and adipokines showed little effects. CONCLUSION: Frequent snoring was associated with an elevated MetS risk independent of lifestyle factors, adiposity, inflammatory markers and adipokines in apparently healthy Chinese. Whether snoring pattern is an economic and no-invasive indicator for screening high-risk persons needs to be addressed prospectively

    Study on Key Aroma Compounds and its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts

    Full text link
    High-oleic acid peanut oil has developed rapidly in China in recent years due to its high oxidative stability and nutritional properties. However, the consumer feedback showed that the aroma of high-oleic peanut oil was not as good as the oil obtained from normal-oleic peanut variety. The aim of this study was to investigate the key volatile compounds and its precursors of peanut oil prepared with normal- and high-oleic peanuts. The peanut raw materials and oil processing samples used in the present study were collected from a company in China. Sensory evaluation results indicated that normal-oleic peanut oil showed stronger characteristic flavor than high-oleic peanut oil. Methylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine and benzaldehyde were considered as key volatiles which contribute to dark roast, roast peanutty and sweet aroma of peanut oil. The initial concentration of volatile precursors (arginine, tyrosine, lysine and glucose) in normal-oleic peanut was higher than high-oleic peanut, which lead to more characteristic volatiles forming during process, and provided stronger aroma of oil. The present research will provide data support for raw material screening and sensory quality improvement during high-oleic acid peanut oil industrial production
    corecore