206 research outputs found

    Baseline bioavailable strontium isotope values for the investigation of residential mobility and resource-acquisition strategies in prehistoric Cambodia

    Get PDF
    Strontium (Sr) isotope ratios (87Sr/86Sr) measured in human skeletal material can increase one's understanding of the residential behaviour and resource‐acquisition strategies of past populations. The paper maps bioavailable 87Sr/86Sr variation in 183 plant and soil samples across Cambodia. Bioavailable 87Sr/86Sr, as measured in plants, differs significantly between four major geological units. The data set will support future investigations of skeletal material from Cambodian archaeological sites. Baseline 87Sr/86Sr data should be applied judiciously to skeletal populations, and in concert with other lines of evidence, to identify potential geographical outliers rather than to ascribe specific locations from which individuals may have movedThey thank the Australian Research Council for supporting the research through the Discovery Grants programme (grantnumbers DP0984968 and DP110101997)

    The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS) prisons project: a randomised controlled trial comparing dihydrocodeine and buprenorphine for opiate detoxification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many opiate users entering British prisons require prescribed medication to help them achieve abstinence. This commonly takes the form of a detoxification regime. Previously, a range of detoxification agents have been prescribed without a clear evidence base to recommend a drug of choice. There are few trials and very few in the prison setting. This study compares dihydrocodeine with buprenorphine.</p> <p>Methods</p> <p>Open label, pragmatic, randomised controlled trial in a large remand prison in the North of England. Ninety adult male prisoners requesting an opiate detoxification were randomised to receive either daily sublingual buprenorphine or daily oral dihydrocodeine, given in the context of routine care. All participants gave written, informed consent. Reducing regimens were within a standard regimen of not more than 20 days and were at the discretion of the prescribing doctor. Primary outcome was abstinence from illicit opiates as indicated by a urine test at five days post detoxification. Secondary outcomes were collected during the detoxification period and then at one, three and six months post detoxification. Analysis was undertaken using relative risk tests for categorical data and unpaired t-tests for continuous data.</p> <p>Results</p> <p>64% of those approached took part in the study. 63 men (70%) gave a urine sample at five days post detoxification. At the completion of detoxification, by intention to treat analysis, a higher proportion of people allocated to buprenorphine provided a urine sample negative for opiates (abstinent) compared with those who received dihydrocodeine (57% vs 35%, RR 1.61 CI 1.02–2.56). At the 1, 3 and 6 month follow-up points, there were no significant differences for urine samples negative for opiates between the two groups. Follow up rates were low for those participants who had subsequently been released into the community.</p> <p>Conclusion</p> <p>These findings would suggest that dihydrocodeine should not be routinely used for detoxification from opiates in the prison setting. The high relapse rate amongst those achieving abstinence would suggest the need for an increased emphasis upon opiate maintenance programmes in the prison setting.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN07752728</p

    CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models

    Get PDF
    CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice

    TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration

    Get PDF
    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration

    A Unique Role for Nonmuscle Myosin Heavy Chain IIA in Regulation of Epithelial Apical Junctions

    Get PDF
    The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis

    Soft matter roadmap

    Get PDF
    Soft materials are usually defined as materials made of mesoscopic entities, often self-organised, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in everyday commodity products, as well as in technological applications, is enormous, and controlling or improving their properties is the focus of many efforts. From a fundamental perspective, the possibility of manipulating soft material properties, by tuning interactions between constituents and by applying external perturbations, gives rise to an almost unlimited variety in physical properties. Together with the relative ease to observe and characterise them, this renders soft matter systems powerful model systems to investigate statistical physics phenomena, many of them relevant as well to hard condensed matter systems. Understanding the emerging properties from mesoscale constituents still poses enormous challenges, which have stimulated a wealth of new experimental approaches, including the synthesis of new systems with, e.g. tailored self-assembling properties, or novel experimental techniques in imaging, scattering or rheology. Theoretical and numerical methods, and coarse-grained models, have become central to predict physical properties of soft materials, while computational approaches that also use machine learning tools are playing a progressively major role in many investigations. This Roadmap intends to give a broad overview of recent and possible future activities in the field of soft materials, with experts covering various developments and challenges in material synthesis and characterisation, instrumental, simulation and theoretical methods as well as general concepts
    • 

    corecore