3,199 research outputs found
Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays
Supermassive black hole -- host galaxy relations are key to the computation
of the expected gravitational wave background (GWB) in the pulsar timing array
(PTA) frequency band. It has been recently pointed out that standard relations
adopted in GWB computations are in fact biased-high. We show that when this
selection bias is taken into account, the expected GWB in the PTA band is a
factor of about three smaller than previously estimated. Compared to other
scaling relations recently published in the literature, the median amplitude of
the signal at yr drops from to
. Although this solves any potential tension between
theoretical predictions and recent PTA limits without invoking other dynamical
effects (such as stalling, eccentricity or strong coupling with the galactic
environment), it also makes the GWB detection more challenging.Comment: 6 pages 4 figures, submitted to MNRAS letter
Effects of correlation between merging steps on the global halo formation
The excursion set theory of halo formation is modified by adopting the
fractional Brownian motion, to account for possible correlation between merging
steps. We worked out analytically the conditional mass function, halo merging
rate and formation time distribution in the spherical collapse model. We also
developed an approximation for the ellipsoidal collapse model and applied it to
the calculation of the conditional mass function and the halo formation time
distribution. For models in which the steps are positively correlated, the halo
merger rate is enhanced when the accreted mass is less than , while
for the negatively correlated case this rate is reduced. Compared with the
standard model in which the steps are uncorrelated, the models with positively
correlated steps produce more aged population in small mass halos and more
younger population in large mass halos, while for the models with negatively
correlated steps the opposite is true. An examination of simulation results
shows that a weakly positive correlation between successive merging steps
appears to fit best. We have also found a systematic effect in the measured
mass function due to the finite volume of simulations. In future work, this
will be included in the halo model to accurately predict the three point
correlation function estimated from simulations.Comment: 8 pages, submitted to MNRA
The Stellar Mass Fundamental Plane: The virial relation and a very thin plane for slow-rotators
Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs)
and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of
half-light radius , enclosed surface brightness and velocity
dispersion . Since and are distance-independent
measurements, the thickness of the FP is often expressed in terms of the
accuracy with which and can be used to estimate sizes .
We show that: 1) The thickness of the FP depends strongly on morphology. If the
sample only includes E-SRs, then the observed scatter in is ,
of which only is intrinsic. Removing galaxies with
further reduces the observed scatter to ( intrinsic). The observed scatter increases to the usually
quoted in the literature if E-FRs and S0s are added. If the FP is defined using
the eigenvectors of the covariance matrix of the observables, then the E-SRs
again define an exceptionally thin FP, with intrinsic scatter of only
orthogonal to the plane. 2) The structure within the FP is most easily
understood as arising from the fact that and are nearly
independent, whereas the and correlations are nearly
equal and opposite. 3) If the coefficients of the FP differ from those
associated with the virial theorem the plane is said to be `tilted'. If we
multiply by the global stellar mass-to-light ratio and we account
for non-homology across the population by using S\'ersic photometry, then the
resulting stellar mass FP is less tilted. Accounting self-consistently for
gradients will change the tilt. The tilt we currently see suggests that
the efficiency of turning baryons into stars increases and/or the dark matter
fraction decreases as stellar surface brightness increases.Comment: 13 pages, 9 figures, 3 tables, accepted for publication in MNRA
Environment and the cosmic evolution of star formation
We present a mark correlation analysis of the galaxies in the Sloan Digital
Sky Survey using weights provided by MOPED. The large size of the sample
permits statistically significant statements about how galaxies with different
metallicities and star formation histories are spatially correlated. Massive
objects formed a larger fraction of their stars at higher redshifts and over
shorter timescales than did less massive objects (sometimes called
down-sizing). We find that those galaxies which dominated the cosmic star
formation at z~3 are predominantly in clusters today, whereas galaxies which
dominate the star formation at z~0 inhabit substantially lower mass objects in
less dense regions today. Hence, our results indicate that star formation and
chemical enrichment occured first in the denser regions of the Universe, and
moved to less dense regions at later times.Comment: 4 pages, 4 figures, submitted to ApJ
Development of a flameproof elastic elastomeric fiber
Various flexible polyurethane structures containing halogen were synthesized from polyesters derived from aliphatic or aromatic polyols and dibasic acids. Aliphatic halide structures could not be used because they are unstable at the required reaction temperatures, giving of hydrogen halide which hydrolyzes the ester linkages. In contract, halogen-containing aromatic polyols were stable and satisfactory products were made. The most promising composition, a brominated neopentyl glycol capped with toluene disocyanate, was used as a conventional diisocyanate, in conjunction with hydroxy-terminated polyethers or polyesters to form elastomeric urethanes containing about 10% bromine with weight. Products made in this manner will not burn in air, have an oxygen index value of about 25, and have tensile strength values of about 5,000 psi at 450% elongation. The most efficient additives for imparting flame retardancy to Spandex urethanes are aromatic halides and the most effective of these are the bromide compounds. Various levels of flame retardancy have been achieved depending on the levels of additives used
Comparing PyMorph and SDSS photometry. II. The differences are more than semantics and are not dominated by intracluster light
The Sloan Digital Sky Survey pipeline photometry underestimates the
brightnesses of the most luminous galaxies. This is mainly because (i) the SDSS
overestimates the sky background and (ii) single or two-component Sersic-based
models better fit the surface brightness profile of galaxies, especially at
high luminosities, than does the de Vaucouleurs model used by the SDSS
pipeline. We use the PyMorph photometric reductions to isolate effect (ii) and
show that it is the same in the full sample as in small group environments, and
for satellites in the most massive clusters as well. None of these are expected
to be significantly affected by intracluster light (ICL). We only see an
additional effect for centrals in the most massive halos, but we argue that
even this is not dominated by ICL. Hence, for the vast majority of galaxies,
the differences between PyMorph and SDSS pipeline photometry cannot be ascribed
to the semantics of whether or not one includes the ICL when describing the
stellar mass of massive galaxies. Rather, they likely reflect differences in
star formation or assembly histories. Failure to account for the SDSS
underestimate has significantly biased most previous estimates of the SDSS
luminosity and stellar mass functions, and therefore Halo Model estimates of
the z ~ 0.1 relation between the mass of a halo and that of the galaxy at its
center. We also show that when one studies correlations, at fixed group mass,
with a quantity which was not used to define the groups, then selection effects
appear. We show why such effects arise, and should not be mistaken for physical
effects.Comment: 15 pages, 17 figures, accepted for publication in MNRAS. The PyMorph
luminosities and stellar masses are available at
https://www.physics.upenn.edu/~ameert/SDSS_PhotDec
The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile
We quantify the systematic effects on the stellar mass function which arise
from assumptions about the stellar population, as well as how one fits the
light profiles of the most luminous galaxies at z ~ 0.1. When comparing results
from the literature, we are careful to separate out these effects. Our analysis
shows that while systematics in the estimated comoving number density which
arise from different treatments of the stellar population remain of order < 0.5
dex, systematics in photometry are now about 0.1 dex, despite recent claims in
the literature. Compared to these more recent analyses, previous work based on
Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of
rho_*(> M_*) by factors of 3-10 in the mass range 10^11 - 10^11.6 M_Sun, but up
to a factor of 100 at higher stellar masses. This impacts studies which match
massive galaxies to dark matter halos. Although systematics which arise from
different treatments of the stellar population remain of order < 0.5 dex, our
finding that systematics in photometry now amount to only about 0.1 dex in the
stellar mass density is a significant improvement with respect to a decade ago.
Our results highlight the importance of using the same stellar population and
photometric models whenever low and high redshift samples are compared.Comment: 18 pages, 17 figures, accepted for publication in MNRAS. The PyMorph
luminosities and stellar masses are available at
https://www.physics.upenn.edu/~ameert/SDSS_PhotDec
Comparative Analysis of Molecular Clouds in M31, M33 and the Milky Way
We present BIMA observations of a 2\arcmin field in the northeastern spiral
arm of M31. In this region we find six giant molecular clouds that have a mean
diameter of 5713 pc, a mean velocity width of 6.51.2 \kms, and a mean
molecular mass of 3.0 1.6 10\Msun. The peak brightness
temperature of these clouds ranges from 1.6--4.2 K. We compare these clouds to
clouds in M33 observed by \citet{wilson90} using the OVRO millimeter array, and
some cloud complexes in the Milky Way observed by \cite{dame01} using the CfA
1.2m telescope. In order to properly compare the single dish data to the
spatially filtered interferometric data, we project several well-known Milky
Way complexes to the distance of Andromeda and simulate their observation with
the BIMA interferometer. We compare the simulated Milky Way clouds with the M31
and M33 data using the same cloud identification and analysis technique and
find no significant differences in the cloud properties in all three galaxies.
Thus we conclude that previous claims of differences in the molecular cloud
properties between these galaxies may have been due to differences in the
choice of cloud identification techniques. With the upcoming CARMA array,
individual molecular clouds may be studied in a variety of nearby galaxies.
With ALMA, comprehensive GMC studies will be feasible at least as far as the
Virgo cluster. With these data, comparative studies of molecular clouds across
galactic disks of all types and between different galaxy disks will be
possible. Our results emphasize that interferometric observations combined with
the use of a consistent cloud identification and analysis technique will be
essential for such forthcoming studies that will compare GMCs in the Local
Group galaxies to galaxies in the Virgo cluster.Comment: Accepted for Publication in the Astrophysical Journa
Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications
We use the halo model of clustering to compute two- and three-point
correlation functions for weak lensing, and apply them in a new statistical
technique to measure properties of massive halos. We present analytical results
on the eight shear three-point correlation functions constructed using
combination of the two shear components at each vertex of a triangle. We
compare the amplitude and configuration dependence of the functions with
ray-tracing simulations and find excellent agreement for different scales and
models. These results are promising, since shear statistics are easier to
measure than the convergence. In addition, the symmetry properties of the shear
three-point functions provide a new and precise way of disentangling the
lensing E-mode from the B-mode due to possible systematic errors.
We develop an approach based on correlation functions to measure the
properties of galaxy-group and cluster halos from lensing surveys. Shear
correlations on small scales arise from the lensing matter within halos of mass
M > 10^13 solar masses. Thus the measurement of two- and three-point
correlations can be used to extract information on halo density profiles,
primarily the inner slope and halo concentration. We demonstrate the
feasibility of such an analysis for forthcoming surveys. We include covariances
in the correlation functions due to sample variance and intrinsic ellipticity
noise to show that 10% accuracy on profile parameters is achievable with
surveys like the CFHT Legacy survey, and significantly better with future
surveys. Our statistical approach is complementary to the standard approach of
identifying individual objects in survey data and measuring their properties.Comment: 30 pages, 21 figures. Corrected typos in equations (23) and (28).
Matches version for publication in MNRA
- …