128 research outputs found

    A comparative study of hydrophilic phosphine hexanuclear rhenium cluster complexes’ toxicity

    Get PDF
    Octahedral rhenium cluster compound Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] has recently emerged as a very promising X-ray contrast agent for biomedical applications. However, the synthesis of this compound is rather challenging due to difficulty to control the hydrolysis of initial P(C2H4CN)3 ligand during the reaction process. Therefore, in this report we compare the in vitro and in vivo toxicity of Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] with those of related compounds featuring fully hydrolysed form of the phosphine ligand, namely Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S or Se). Our results demonstrate that cytotoxicity and acute in vivo toxicity of the complex Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] solutions were considerably lower than those of compounds with fully hydrolysed ligand P(C2H4COOH)3. Such behavior can be explained by the higher osmolality of Na2H14[{Re6Q8}(P(C2H4COO)3)6] versus Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6]

    Water-soluble hybrid materials based on {Mo₆X₈}⁴⁺ (X = Cl, Br, I) cluster complexes and sodium polystyrene sulfonate

    Get PDF
    Development of water-soluble forms of octahedral molybdenum clusters {Mo₆X₈}⁴⁺ (X = Cl, Br, I) is strongly motivated by the tremendous potential that these complexes have for biological applications, namely as agents for bioimaging and photodynamic therapy. In these work we report the first water-soluble hybrid materials, which represent sodium polystyrene sulfonate doped by molybdenum clusters, and evaluation of their photophysical and biological properties (dark and photoinduced cytotoxicity and cellular uptake) with the use of cervical cancer (HeLa) and human epidermoid larynx carcinoma (Hep-2) cell-lines as models

    Characterization and cytotoxicity studies of thiol-modified polystyrene microbeads doped with [(Mo6X8)(NO3)6]2- (X=Cl, Br, I)

    Get PDF
    Halide octahedral molybdenum clusters [(Mo6X8)L6]n- possess luminescence properties that are highly promising for biological applications. These properties are rather dependent on the nature of both the inner ligands X (i.e. Cl, Br, or I) and the apical organic or inorganic ligands L. Herein, the luminescence properties and the toxicity of thiol-modified polystyrene microbeads (PS-SH) doped with [(Mo6X8)(NO3)6]2- (X=Cl, Br, I) were studied and evaluated using human epidermoid larynx carcinoma (Hep2) cell cultures. According to our data, the photoluminescence quantum yield of (Mo6I8)@PS-SH is significantly higher (0.04) than that of (Mo6Cl8)@PS-SH (6Br8)@PS-SH (6X8)@PS-SH showed that all three types of doped microbeads had no significant effect on the viability and proliferation of the cells

    Cellular internalisation, bioimaging and dark and photodynamic cytotoxicity of silica nanoparticles doped by {Mo₆I₈}⁴⁺ metal clusters

    Get PDF
    Silica nanoparticles (SNPs) doped by hexanuclear molybdenum cluster complexes [{Mo₆X₈}L₆]n (X = Cl, Br, or I; L = various inorganic or organic ligands) have been recently suggested as materials with a high potential for biomedical applications due to both the outstanding photoluminescent properties and the ability to efficiently generate singlet oxygen upon photoirradiation. However, no studies were undertaken so far to prove this concept. Therefore, here we examined the potential of photoluminescent SNPs doped by {Mo₆I₈}⁴⁺ for such applications as bioimaging and photodynamic therapy using human epidermoid larynx carcinoma (Hep-2) cell line as a model. Our results demonstrated both: (i) significant luminescence from cells with internalised molybdenum cluster doped SNPs combined with the low cytotoxicity of particles in the darkness and (ii) significant cytotoxicity of the particles upon photoirradiation. Thus, this research provides strong experimental evidence for high potential of molybdenum cluster doped materials in such biomedical applications as optical bioimaging, biolabeling and photodynamic therapy

    Experimental infection of H5N1 HPAI in BALB/c mice

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Octahedral molybdenum cluster as a photoactive antimicrobial additive to a fluoroplastic

    Get PDF
    Finding methods that fight bacterial infection or contamination, while minimising our reliance on antibiotics is one of the most pressing needs of this century. Although the utilisation of UV-C light and strong oxidising agents, such as bleach, are still efficacious methods for eliminating bacterial surface contamination, both methods present severe health and/or environmental hazards. Materials with intrinsic photodynamic activity (i.e. a material's ability upon photoexcitation to convert molecular oxygen into reactive oxygen species such as singlet oxygen), which work with light within the visible photomagnetic spectrum could offer a significantly safer alternative. Here we present a new, bespoke molybdenum cluster (Bu4N)2[Mo6I8(n-C7F15COO)6], which is both efficient in the generation of singlet oxygen upon photoirradiation and compatible with the fluoropolymer (F23-L) known for its good oxygen permeability. Thus, (Bu4N)2[Mo6I8(n-C7F15COO)6]/F23-L mixtures have been solution-processed to give homogenous films of smooth and fibrous morphologies and which displayed high photoinduced antibacterial activity against four common pathogens under visible light irradiation. These materials thus have potential in applications ranging from antibacterial coatings to filtration membranes and air conditioners to prevent spread of bacterial infections

    One-pot synthesis of {Mo6 I8 }4+ -doped polystyrene microspheres via a free radical dispersion copolymerisation reaction:{Mo6 I8 }4+ -doped polystyrene microspheres via free radical copolymerisation

    Get PDF
    Molybdenum octahedral clusters, when incorporated into an appropriate polymer matrix, are considered as promising agents for a range of biological applications. This work describes the one-pot synthesis, morphology and cellular toxicity of nano-sized polystyrene beads doped with luminescent cluster complexes [(Mo6X8)(NO3)6]2- (X=Cl, Br or I). Specifically, the particles were obtained by free radical dispersion copolymerisation of styrene and methacrylic acid or 4-vinylpyridine in the presence of the cluster complexes. The effects of the cluster loading in the reaction mixture on both the content of the final material and number-average molar mass of the copolymers were evaluated
    corecore