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Abstract Molybdenum octahedral clusters, when incorporated into an appropriate polymer 

matrix, are considered as promising agents for a range of biological applications. This work 

describes the one-pot synthesis, morphology and cellular toxicity of nano-sized polystyrene beads 

doped by luminescent cluster complexes [{Mo6X8}(NO3)6]
2– (X = Cl, Br or I). Specifically, the 

particles were obtained by free-radical dispersion copolymerisation of styrene and methacrylic 

acid or 4-vinylpyridine in the presence of the cluster complex. The effect of the cluster loading in 

the reaction mixture on both the content of the final material and number-average molar mass of 

the copolymers were evaluated. 

Keywords: Molybdenum cluster complex, free radical polymerisation, copolymer material, 

luminescence. 

1. Introduction 

Doping of conventional polymers such as poly(methyl methacrylate) (PMMA), poly(N-

vinylcarbazole), polystyrene (PS), polyurethane, etc. by phosphorescent hexanuclear octahedral 

cluster complexes [{M6X8}L6]
m (where M is Mo and X is Cl, Br or I or M is Re and X is S or Se, 

while L is an apical ligand) has recently emerged as a simple and a convenient method to prepare 

new luminescence materials.1-14 These hybrid materials demonstrated potential for both materials-

based applications including fibrous materials for photonics and data transmission,1, 2 polymer 

light-emitting diodes,3 oxygen sensing4 and for biomedicine, e.g. as agents for optical bioimaging5, 
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6 (including X-ray luminescence computed tomography7), photodynamic therapy and 

photoinactivation of bacteria.15 

Among the whole family of hexanuclear metal-clusters, octahedral molybdenum cluster 

complexes are at the moment the most thoroughly studied moieties due to their outstandingly high 

photoluminescence quantum yields that can be achieved by careful selection of inner and apical 

ligands.11, 16-21 Several routes were explored to incorporate these cluster complexes into organic 

matrices including (i) co-dissolution of metal clusters and polymers followed by solvent 

evaporation (often combined with processing into particles, films or fibres);11, 12 (ii) free radical 

polymerisation of organic monomers with pre-made cluster complexes featuring vinyl-group 

functionality within their ligands or counter-ions2, 4, 8, 13 and (iii) impregnation of cluster 

complexes, having labile apical ligands, into functionalised organic polymers.5, 6, 14 Notably, any 

of these procedures usually employ at least two steps, such as synthesis of a bespoke 

(functionalised) polymer; synthesis of a bespoke (functionalised) metal cluster; doping of the 

polymer by the cluster and processing of the metal cluster/polymer hybrid. 

To simplify the preparation of metal cluster-doped materials, in this work we sought to explore a 

one-pot procedure for the synthesis of molybdenum cluster-doped organic microparticles. 

Specifically, we report dispersion free-radical copolymerisation of styrene with functionalised 

monomers (methacrylic acid or 4-vinylpyridine) in the presence of molybdenum cluster complexes 

[{Mo6X8}(NO3)6]
2– (X = Cl, Br, I) bearing labile apical NO3-ligands. The materials were obtained 

in the presence of varying amounts of clusters and the effect of the clusters on the morphology, 

final cluster loading and number-average molar mass of the resultant copolymer was evaluated.  

Moreover, we also studied the cellular toxicity of the obtained micro-spheres using the larynx 

carcinoma (Hep-2) cell line as a model. Indeed these materials are particularly interesting in the 

context of in vitro bioimaging (for assay development and preliminary screening applications) and 

in vitro theranostic applications whereby imaging can be coupled with bead-mediated delivery. In 

the context of these applications, such inorganic clusters may be superior to conventional 

fluorophores and quantum dots. In contrast to metal clusters conventional fluorophores whilst 

widely used in many different labelling and imaging applications suffer from the very serious 

drawback of photobleaching. This phenomenon is problematic for all organic molecule-based 

fluorophores and prevents imaging over extended time periods.22, 23 Photobleaching is not a 

problem when imaging with the inorganic clusters or indeed with quantum dots.11, 24, 25 There are 

however toxicity issues associated with the use of quantum dots 26 since they typically contain 

highly toxic materials (e.g. Cd, Se, Te, etc.) and even when coated (e.g. by liposomes, proteins, 

polymers etc.) which are reported to reduce toxicity 27 they still remain toxic. In our other works 



6, 14, 28 as well as in the current work we demonstrate that octahedral molybdenum clusters have 

extremely low toxicity. 

2. Experimental 

2.1. Equipment 

Fourier transform infrared spectroscopy (FTIR) was conducted on a Bruker Vertex 80 (Bruker 

Corporation, Billerica, MA, USA), with samples dispersed in KBr disks. Optical diffuse 

reflectance spectra were measured at room temperature on a Shimadzu UV–Vis-NIR 3101 PC 

spectrophotometer (Shimadzu Corporation, Kyoto, Japan) equipped with an integrating sphere and 

reproduced in the form of Kubelka–Munk theory. Atomic emission spectrometry with direct 

current arc was carried out on a spectrograph PGS-2 (Carl Zeiss Jena, Germany). The shape and 

size of the copolymer microparticles were characterized by Transmission Electron Microscopy 

(TEM) using a Libra 120 (Zeiss) TEM. Elemental maps were recorded using the standard three-

window technique described in Brydson, Electron Energy Loss Spectroscopy (Bios Scientific 

Publishers Ltd, 2001). GPC was carried out on an Agilent LC 1200 setup equipped with an 

isocratic pump, a PL-gel Mixed-C column, and a UV refractometric detector. The system, 

operating at 40 °C with an eluent (THF) flow rate of 1 mL∙min–1, was calibrated against narrow 

polystyrene standards (Mp ranged from 162 to 6 035 000 g∙mol–1). 1H NMR spectra were recorded 

in CDCl3 (δH = 7.26) in the standard way on Bruker Avance 200 spectrometer. The optical density 

for the MTT-assay was measured with a Multiskan FC (Thermo scientific, USA) plate reader at a 

wavelength of 620 nm. 

2.2. Materials 

(Bu4N)2[{Mo6X8}(NO3)6] (X=Cl, Br or I) clusters were synthesised as described previously.6, 29 

Methacrylic acid (MAA), 4-vinylpyridine (4-ViPy), tert-butyl peroxybenzoate (Luperox® P), 

styrene and poly(vinylpyrrolidone) (PVP, 58 kDa) were purchased from Sigma Aldrich and used 

as received, with the exception of styrene where the inhibitors present in the monomer were 

removed via extraction with 1M NaOH solution and the monomer subsequently dried over MgSO4. 

2.2.1. General procedure for preparation of neat and cluster-doped polystyrene microparticles 

Microparticle samples denoted as {Mo6X8}
n@PS-COOH and {Mo6X8}

n@PS-Py (where X is Cl, 

Br or I; n is the loading of the initial cluster (Bu4N)2[{Mo6X8}(NO3)6] in %; neat PS-COOH or 

neat PS-Py is styrene copolymerised with 2% w/w of MAA or 4-ViPy, respectively) were prepared 

by dispersion copolymerisation using the following protocol: styrene (1100 µL, 9.6 mmol), 10, 50 

or 100 mg of (Bu4N)2[{Mo6X8}(NO3)6] (1, 5 and 10% w/w with styrene), MAA (16.2 µL, 0.2 



mmol) or 4-ViPy (20.4 µL, 0.2 mmol), and the initiator tert-butyl peroxybenzoate (18.3 µL, 0.096 

mmol) were dissolved in 13 mL of a 1% ethanolic solution of PVP. The solution was degassed 

with argon for 10 minutes and the reaction tube was sealed. The reaction mixture was stirred at 80 

°С for 24 h. After completion of the reaction, 5 mL of EtOH was added to the suspension to remove 

unreacted cluster complex and the mixture was stirred for 5 minutes and then centrifuged (6000 

rpm for 8 minutes). The precipitate was rinsed once with EtOH (5 mL) and twice with H2O (5 mL) 

and finally re-suspended in 5 mL of water. To estimate the dependence of molecular weight and 

monomer conversion on reaction time, 1 mL aliquots were collected 2, 4, 6, 21 and 24 h after 

initiation of the copolymerisation reaction. 

2.2.2. Conversion study 

The volatile components of the reaction mixture were removed by evaporation using the rotary 

evaporator. The residual mixture of PVP and polystyrene copolymer was dissolved in 0.6 mL of 

CDCl3. PVP was used as an internal standard to determine the amount of polystyrene formed. 

Specifically, the conversion of the copolymer was calculated using the formula: Conv(%) 

= 
𝐼(6.0−6.73 ppm)

𝐼(2.8−4.0 𝑝𝑝𝑚)
×

3

5
×

𝑛(𝑃𝑉𝑃)

𝑛(𝑠𝑡𝑦𝑟𝑒𝑛𝑒)
× 100%, where I(6.0–6.73 ppm) and I(2.8–4 ppm) are the 

integrated intensities of signals from polystyrene and PVP, respectively, while n(PVP) and 

n(styrene) are the number of moles of PVP and styrene used in the reaction (Figure 1S, ESI). 

2.3. Physico-chemical characterisation 

2.3.1. Luminescence measurements 

To measure the emission properties of {Mo6X8}
1@PS-COOH and {Mo6X8}

1@PS-Py powders, 

the samples were placed between two non-fluorescent glass plates. The measurements were carried 

out at 298 K. The samples were excited by 355-nm laser pulses (6 ns duration, LOTIS TII, LS-

2137/3). The corrected emission spectra were recorded on a red-light-sensitive multichannel 

photodetector (Hamamatsu Photonics, PMA-11). The emission decay was analysed by a 

streakscope system (Hamamatsu Photonics, C4334 and C5094). The emission quantum yields 

were determined on an Absolute Photo-Luminescence Quantum Yield Measurement System 

(Hamamatsu Photonics, C9920-03), which comprised of an excitation Xenon light source (λex = 

400 nm), an integrating sphere and a red-sensitive multichannel photodetector (Hamamatsu 

Photonics, PMA-12). 

2.4. Biological studies 

2.4.1. Cell proliferation colorimetric assay  



Human epidermoid larynx carcinoma (Hep-2) cells were purchased from the State Research Centre 

of Virology and Biotechnology VECTOR (Koltsovo, Novosibirsk region, Russian Federation) and 

cultured in Eagle’s minimum essential medium supplemented with 10% fetal bovine serum, under 

a humidified atmosphere (5% CO2 plus 95% air) at 37 °C. 

The cells were seeded on a 96-well plate at a concentration of 7×103 cells per well and incubated 

at 37 °C and 5% CO2 for 24 hours. The media was then replaced with fresh media and the cells 

were cultured for 48 h with suspensions of {Mo6I8}
1@PS-COOH or neat PS-COOH microbeads 

in a concentration range from 0.006 to 3.25 mg/mL. The negative control was prepared identically 

but without any polymeric materials. 10 μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) solution (5 mg/mL) and 90 μL of media was added to each 

well, and the plates were incubated for 4 h. Thereafter the culture media was removed, the 

formazan formed was dissolved in 150 μL of dimethyl sulfoxide, vortexed, and the formazan 

concentration was determined spectrophotometrically at 620 nm. The results are presented as the 

ratio of the optical density of the sample to the control. The experiment was repeated on three 

separate days. 

2.5. Statistical analyses 

Statistical analyses were performed using the Mann–Whitney U test for unpaired data and P values 

of less than 0.01 were considered as significant. The data are presented as mean ± SEM (standard 

error of the mean). 

3. Results and discussion 

3.1. Synthesis 

Molybdenum cluster complexes demonstrate intense phosphorescence and an ability to 

generate singlet oxygen and therefore they have high potential for both materials-based (e.g. 

photonics materials) and biological applications (e.g. bioimaging and photodynamic therapy 

agents). To explore this potential, molybdenum clusters are often incorporated into pre-made 

polymer micro- and nano-particles functionalised by either n-donor groups, i.e. ligands for 

molybdenum atoms,5, 6 or cationic groups to bind cluster anions by electrostatic forces.15 For 

example, we have recently reported utilisation of polystyrene microparticles functionalised by 

thiol groups as copolymeric ligands for {Mo6X8}
4+ cluster core, where complexes 

(Bu4N)2[{Mo6X8}(NO3)6] (X = Cl, Br or I) were used as precursors to produce luminescent 

polystyrene particles.5, 6 The purity if the clusters were characterised by IR and CHN analysis 

(Figure 2S, Table 1S). 



Polystyrene particles of sub-micron size are indeed of particular interest, since they have 

shown high efficiency for beadfection (i.e. cellular delivery using polymer beads30-32). Indeed 

earlier works 31 have shown that one to two micron-sized microspheres are taken up readily by 

cells via a non-endocytosis mediated mechanism. This uptake mechanism is vital if one is to 

deliver fragile molecular cargoes such as proteins 30 since it avoids exposure of the molecular 

cargo to the degradative environment of the endosome. Spherical polystyrene microbeads with 

narrow size distributions are easily obtained by dispersion polymerisation of styrene in droplets 

stabilised by a non-ionic surfactant, in particular PVP – poly(N-vinylpyrrolidone).30 However, 

incorporation of a polar (more hydrophilic) functionalised monomer is often very challenging: as 

the amount of a hydrophilic monomer that can be copolymerised is limited regardless of the initial 

content,33-35 while incorporation of such a monomer can result in increased particle sizes and size 

distribution.36-38 On the other hand, a low concentration of the functionalised monomer within the 

particles limits the number of clusters that can be immobilised, since accessibility to a sufficient 

number of donor groups distributed within the microspheres can be difficult. 

To facilitate easy access of metal cluster to functionalised moieties within the microspheres, here 

we have undertaken a one-pot dispersion copolymerisation of styrene with the polar functionalised 

monomers – methacrylic acid (MAA) and 4-vinylpyridine (4-ViPy) in the presence of 

(Bu4N)2[{Mo6X8}(NO3)6] as a source of photoluminescent cluster core. Indeed, we have shown 

earlier that these complexes are highly labile, due to the presence of nitrato-ligands5, 6, 14 and 

therefore would undergo ligand metathesis with the functionalised moieties within the 

microspheres. To minimise the effect of the polar monomers on the morphology of the final beaded 

hybrid material, their amount was set to 2%-mol, while the amount of copolymerisation initiator 

(tert-butyl peroxybenzoate) was 1%-mol. 

To evaluate the effect of presence of molybdenum cluster on copolymerisation we studied the 

number-average molar mass (Mn) of the copolymers by GPC and monomer conversion by NMR 

spectrometry analysis on samples obtained in the presence of different amounts of the clusters – 

1%, 5% and 10% w/w with respect to styrene (Figure 1). The Mn and dispersity index (Đ) values 

of the samples of {Mo6X8}
n@PS-COOH and {Mo6X8}

n@PS-Py (X = Cl, Br or I), neat PS-COOH 

and neat PS-Py collected from the reaction mixture are presented in Figure 3S-11S while the data 

obtained after copolymerisation for 24 h are summarised in Table 1. The data show that the 

molybdenum clusters inhibit the free radical copolymerisation reaction. Specifically, with 

increased cluster loading, both the monomer conversion and molecular weight of the copolymer 

decreases. Indeed, in the presence of 1% of any of the clusters after 24 h copolymerisation the 

overall monomer conversion was about 40-60% and the molecular weight of the resultant 



copolymer was up to ~60 kDa, i.e. both were lower than that for the corresponding neat copolymer 

(110 kDa for PS-COOH and 77kDa for PS-Py with 80% or above of conversion). The presence of 

10% w/w of any of the clusters significantly disrupts the copolymerisation reaction, as the final 

monomer conversion values were all no more than 20%, while number-average molar masses were 

0.6-3.7 kDa for samples with the chloride and iodide complexes and 10-21 kDa for samples with 

the bromide complex (Table 1). This observation signifies that the cluster acts as a 

copolymerisation inhibitor suppressing both the growth of copolymer chains and the amount of 

monomer conversion. Therefore, all the following characterisation were undertaken on samples 

prepared in the presence of 1%-w/w of cluster after copolymerisation for 24 h. 

The inhibition is likely due to some interactions of the molybdenum in the clusters with the initiator 

and/or forming radicals, which decelerates the growth of the copolymeric chain.2, 39 Indeed, it is 

known that metal clusters can participate in electron-transfer processes producing radicals, which 

are less reactive than those formed in polymerisation reaction.19, 40-43 Formation of such radicals 

means that clusters to act as copolymerisation inhibitors since they can effectively scavenge free 

radicals from the copolymerisation reaction thereby slowing it down or stopping it altogether. 

Notably, the presence of hexamolybdenum cluster complexes has been reported to have a similar 

effect on the number-average molar masses of other copolymers, although somewhat less 

pronounced: for example in the bulk and solution copolymerisation of methyl methacrylate in the 

presence of such labile complexes as [{Mo6I8}(OTS)6]
2– and [{Mo6I8}(CF3CF2COO)6]

2–.2, 13 

 

 

Figure 1. Molecular weight for neat PS-COOH and {Mo6I8}@PS-COOH materials with different 

cluster content 
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Table 1. Final conversions of monomer in the copolymerisation experiments carried out with and 

without Mo6 cluster complexes as determined by 1H NMR spectroscopy and Number-average 

molar mass (Mn) and dispersity index (Đ) determined by GPC in THF. Reaction time was 24 hours. 

Matrix or 

Cluster@Matrix 

Cluster 

content (n), 

% 

Mn, kDa Đ 
Conversion 

(NMR), % 

neat PS-COOH 0 110 2.5 85 

{Mo6Cl8}
n@PS-COOH 

1 68 2 40 

5 18 2 33 

10 0.6 1 18 

{Mo6Br8}
n@PS-COOH 

1 60 1.6 45 

5 16 2 32 

10 12 1.9 20 

{Mo6I8}
n@PS-COOH 

1 65 1.7 37 

5 32 1.6 20 

10 0.6 1 15 

neat PS-Py 0 77 2.4 80 

{Mo6Cl8}
n@PS-Py 

1 34 2 40 

5 20 1.9 20 

10 1.1 1.3 10 

{Mo6Br8}
n@ PS-Py 

1 64 2 63 

5 33 1.7 25 

10 21 1.3 20 

{Mo6I8}
n@PS-Py 

1 64 1.6 41 

5 10 2 <5 

10 3.7 1.5 <5 

 

3.2. Physicochemical characterisation 

A range of techniques were employed to confirm that molybdenum cluster complexes were 

incorporated into the microspheres. ICP analysis showed that both {Mo6X8}
1@PS-COOH and 

{Mo6X8}
1@PS-Py do indeed contain molybdenum (Table 2S). Interestingly, {Mo6X8}

1@PS-Py 

samples contain noticeably more cluster than {Mo6X8}
1@PS-COOH, i.e. pyridine-functionalised 

copolymers bind molybdenum clusters better than carboxyl-functionalised ones. In the reported 

reaction metal cluster reacts with the polymer chain donor groups. Therefore it is expectable that 

only a limited amount of cluster is loaded in the polymers. This amount is determined by the 

reaction rate of ligand metathesis reaction (i.e. substitution of NO3
– for COO– or Py group) and 

time (which in our case was fixed to 24 h). Unreacted cluster was then washed away by ethanol.  

In the FTIR spectra of the microspheres the vibration signals of the nitrato ligands of the starting 

clusters were not detected, which suggests the successful substitution of the ligands by the donor 

groups of the functionalised monomers (Figure 12S). UV/Vis diffuse reflectance spectra of the 



samples doped with the molybdenum clusters demonstrate enhancement of absorption within the 

visible region. In this region there is an increased absorbance in the blue diapason of the spectra 

in the order Cl < Br < I (Figure 2). These observations are in agreement with the general trend 

found within the family of octahedral molybdenum cluster complexes based on {Mo6X8}
4+ 

cores.19, 43, 44 

 

Figure 2. Ultraviolet/visible diffuse reflectance spectra of {Mo6X8}
1@PS-COOH and neat PS-

COOH (left) or {Mo6X8}
1@PS-Py and neat PS-Py (right) 

According to TEM imaging, the particles have spherical morphologies with sub-micron sizes 

mainly in the range of 400–700 nm (Figures 3 and 13S), while the electron energy-loss 

spectroscopy (EELS) confirmed the uniform distribution of the clusters within the copolymer 

matrices. DLS data (Table 3S) show that the hydrodynamic size range of the particles is in the 

range of ~600–1400 nm, while dispersity index values demonstrate a relatively broad size 

distribution. This broad size distribution is likely due to both the presence of polar (hydrophilic) 

monomers and the incorporation of the charged cluster species into the copolymer. 
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Figure 3. Representative TEM images of neat PS-COOH (A) and neat PS-Py (C), {Mo6I8}
1@PS-

COOH (B) and {Mo6I8}
1@PS-Py (D). White dots visible in B and D show the molybdenum 

distribution obtained from electron energy-loss spectroscopy 

 

3.3. Luminescence measurements 

Emission spectra of the dried powdered samples are presented in Figures 4 and 5, while 

photophysical characteristics: emission maximum wavelength (em), photoluminescence quantum 

yields (em) and emission lifetimes (em) with the corresponding amplitudes (A) of {Mo6X8}
1@PS-

COOH and {Mo6X8}
1@PS-Py are given in Table 2 along with those of precursors 

(Bu4N)2[{Mo6X8}(NO3)6] for the sake of comparison. Emission decay profiles of {Mo6Br8}
1@PS-

COOH and {Mo6I8}
1@PS-COOH are presented in Figures 14S and 15S. One can notice that the 

luminescence properties of microspheres {Mo6X8}
1@PS-Py are noticeably weaker than those of 

{Mo6X8}
1@PS-COOH. This is likely due to the coordination of pyridine ligands to molybdenum 

cluster. Indeed, DFT calculations undertaken earlier for [{Mo6Cl8}(Py)6]
4+ by R. Ramirez-Tagle 

et al.45 demonstrated significant contribution of the axial pyridine ligands to the LUMO, which is 

different from some other luminescent {Mo6X8}
4+ complexes, where the LUMO arises mostly 

from the cluster core. The authors of the calculations therefore concluded that the presence of 

pyridine ligands in the ligand environment of the molybdenum cluster core would switch off 

luminescence.45 The recent study by Akagi et al. further concludes that the electron density in the 

{Mo6X8}
4+ cluster core is the most important factor determining the photophysical properties of 



these clusters.21 Pyridine ligands are strong electron donors, while acrylate groups being residues 

of a medium strength acid have more pronounced electron-withdrawing properties, but not as 

strong as that of residues of the strong oxygenated acids (e.g. sulfonates, nitrates and fluorinated 

acids). High electron density in the cluster core in the case of pyridine based materials effectively 

results in the absence of luminescence, while the electron-withdrawing nature of the carboxylate 

group gives rise to luminescent materials. 

The luminescence quantum yield of {Mo6Cl8}
1@PS-COOH was too low to be detected. 

This is in agreement with the earlier studies.6 Indeed, from all known {Mo6Cl8}
4+ complexes only 

[{Mo6Cl8}Cl6]
2– revealed significant photoluminescence quantum yield.46 To our regret, we also 

observed a considerable reduction of photoluminescence quantum yields for {Mo6Br8}
4+ and 

{Mo6I8}
4+ in the case of the PS-COOH matrix in comparison with the starting nitrato complexes 

[{Mo6X8}(NO3)6]
2– (X = Br or I) (Table 2), while the luminescence quantum yields reported for 

carboxylate hexamolybdenum complexes, in particular for {Mo6I8}
4+-based ones, lay in the ranges 

of 0.13-0.36 for solid samples and 0.48-0.67 for deaerated acetonitrile solutions.20 Such reduction 

may be attributed to partial solvolysis of molybdenum cluster complexes during the 

copolymerisation. The shifts of emission maxima peaks is likely due to the change of the 

coordination environment of the cluster cores as has been observed earlier for other matrices.5, 6, 14 
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Figure 4. Luminescence spectra of {Mo6X8}
1@PS-COOH materials. The samples were placed 

between two non-fluorescent glass plates and excited by 355-nm laser pulses. The measurements 

were carried out at 298 K. 
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Figure 5. Luminescence spectra of {Mo6X8}
1@PS-Py materials. The samples were placed 

between two non-fluorescent glass plates and excited by 355-nm laser pulses. The measurements 

were carried out at 298 K. 

 

Table 2. Luminescence data for [{Mo6X8}(NO3)6]
2– and the hybrid materials {Mo6X8}

1@PS-

COOH and {Mo6X8}
1@PS-Py (X = Cl, Br or I). λem is an emission maximum wavelength; τem 

are the photoluminescence lifetimes with the corresponding amplitudes (A) for the 

photoluminescence decay equation, where intensity (I) of photoluminescence vs time is 

expressed as ; Φem is photoluminescence quantum yield. 

 

Sample em, nm em, µs (A) em 

(Bu4N)2[{Mo6Cl8}(NO3)6] 
6 ~765 

1 = 17 (0.14) 

2 = 9.3 (0.02) 

3 = 1.9 (0.84) 

<0.005 

(Bu4N)2[{Mo6Br8}(NO3)6] 
6 ~785 

1 = 19 (0.25) 

2 = 11 (0.20) 

3 = 0.9 (0.55) 

<0.01 

(Bu4N)2[{Mo6I8}(NO3)6] 
5 ~666 

1 = 96 (0.71) 

2 = 26 (0.29) 
0.26 



{Mo6Cl8}
1@PS-COOH    

{Mo6Br8}
1@PS-COOH ~ 715 

1 = 42.6 (0.03 

2 = 8.0 (0.07) 

3 = 0.51 (0.90) 

< 0.005 

{Mo6I8}
1@PS-COOH ~ 690 

1 = 70.1 (0.12) 

2 = 17.9 (0.31) 

3 = 2.06 (0.57) 

< 0.005 

{Mo6Cl8}
1@PS-Py    

{Mo6Br8}
1@ PS-Py ~ 700 – – 

{Mo6I8}
1@ PS-Py ~ 700 – – 

 

3.4. Cellular toxicity studies 

Since materials based on octahedral hexanuclear cluster complexes have high potential for a range 

of biological applications including optical or X-ray bioimaging7, 47-51 and photodynamic 

therapy,15, 28, 52 we have recently launched a thorough evaluation of toxicity of Mo6-based 

compounds and materials.6, 14, 28, 53 Here, we have studied toxicity of the material {Mo6I8}
1@PS-

COOH, which showed the highest emission brightness (Figure 4), and neat PS-COOH 

microspheres on human epidermoid larynx carcinoma (Hep-2) cells within a broad range of 

concentrations (0.003-3.25 mg/mL). These studies were based on a standard colorimetric 

cytotoxicity assay using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) 

assay. Percentages of metabolically active cells after incubation with the microspheres for 48 h 

against the negative control (i.e. cells incubated without the microspheres) are given in Figure 6. 

The MTT test revealed that both neat and molybdenum cluster-doped materials did not show a 

significant depressive effect on Hep-2 cells proliferation across the whole concentration range. 

Surprisingly, the results displayed that the cluster-based material was somewhat less toxic than the 

neat copolymer PS-COOH. Specifically at the highest incubation concentration the viability of the 

cells in the presence of the cluster-doped material was 95%, while it was about 80% in the presence 

of the neat copolymer. Although we cannot explain this peculiar observation with certainty, we 

suggest that the reasons for that could be both the difference of the size (Table 3S) or even zeta 

potential of the materials, namely the effect of these parameters on the cellular internalisation of 

the material. Due to the exceptionally low toxicity of both materials, the IC50 doses were not 

established. 



 

Figure 6. MTT data for the most luminescent {Mo6I8}
1@PS-COOH material and for the neat PS-

COOH material 

4. Conclusion 

The major conclusion of this work is that photoluminescent spherical polystyrene particles doped 

with octahedral molybdenum cluster can indeed be obtained in a facile one-pot dispersion 

copolymerisation reaction. However, there are at least two challenges associated with this process: 

1) the presence of reactive (labile) molybdenum cluster complexes at high concentrations 

inhibits/suppresses free-radical copolymerisation; 2) ligand substitution significantly changes the 

photophysical properties of hexamolybdenum cluster complexes. Specifically, we have 

demonstrated that binding hexamolybdenum clusters by the carboxylated copolymer matrix results 

in photoluminescent materials, while the corresponding pyridine-functionalised copolymer 

switches off photoluminescence of the cluster. The latter finding is in agreement with recent 

studies of the effects of the pKas of apical ligands on the photoluminescence properties of 

molybdenum clusters, i.e. the higher pKa(LH) value the lower quantum yield of the corresponding 

cluster complex [{Mo6X8}L6]
2–.20 
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