14 research outputs found

    Prevention of Catastrophic Volcanic Eruptions, Large Earthquakes underneath Big Cities, and Giant Earthquakes at Subduction Zones

    Get PDF
    Catastrophic volcanic eruptions, large earthquakes beneath big cities, or giant earthquakes at subduction zones are apparently the biggest problems facing the sustainability of human society. However, imminent prediction methods for these events have never been established, except that volcanic eruptions can only be predicted by exceptional efforts by dedicated researchers. Even if a prediction method has been established, the method cannot significantly reduce infrastructure damage, although it could slightly reduce the number of fatalities. On the other hand, prevention of eruptions or earthquakes could significantly reduce, not only the number of fatalities, but also infrastructure damage. Therefore, the authors propose (1) gradual energy release by supercritical power generation to prevent catastrophic eruptions; (2) gradual seismic energy release by injecting water into seismic sources to prevent large earthquakes beneath big cities; and (3) exploding existing nuclear warheads underground to prevent giant earthquakes at subduction zones. Necessary technical developments, costs, risks, and problems will also be explained

    Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies

    No full text
    Compared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This might lead to a better overall efficiency and much simpler operation. This paper provides a review of the current published literature on the different types of existing ground coupled thermosiphons for use in applications requiring moderate and low temperatures. Effort has been focused on their classification according to type, configurations, major designs, and chronological year of apparition. Important technological findings and characteristics are provided in summary tables. Advances are identified in terms of the latest device developments and innovative concepts of thermosiphon technology used for the heat transfer to and from the soil. Applications are presented in a novel, well-defined classification in which major ground coupled thermosiphon applications are categorized in terms of medium and low temperature technologies. Finally, performance evaluation is meticulously discussed in terms of modeling, simulations, parametric, and experimental studies. © 2019 by the authors. Licensee MDPI, Basel, Switzerland
    corecore