93 research outputs found

    Resonant Superfluidity in an Optical Lattice

    Get PDF
    We study a system of ultracold fermionic Potassium (40K) atoms in a three-dimensional optical lattice in the vicinity of an s-wave Feshbach resonance. Close to resonance, the system is described by a multi-band Bose-Fermi Hubbard Hamiltonian. We derive an effective lowest-band Hamiltonian in which the effect of the higher bands is incorporated by a self-consistent mean-field approximation. The resulting model is solved by means of Generalized Dynamical Mean-Field Theory. In addition to the BEC/BCS crossover we find a phase transition to a fermionic Mott insulator at half filling, induced by the repulsive fermionic background scattering length. We also calculate the critical temperature of the BEC/BCS-state and find it to be minimal at resonance.Comment: 19 pages, 3 figure

    Environmental Control Measures in Sponge Iron Industry with Particualr Reference to Tata Sponge Iron Limited

    Get PDF
    Direct reduced iron or sponge iron technology was developed as an alternate route for steel making and is considered as a clean technology. The waste generation and gas emissi-ons from this route of steel making are far less when comp-ared to the conventional blast furnace route. The paper details the efforts of Tata Sponge Iron Limited to make the process a clean technology without affecting its surroundings and natural resources

    Quantum entanglement of spin-1 bosons with coupled ground states in optical lattices

    Get PDF
    We examine particle entanglement, characterized by pseudo-spin squeezing, of spin-1 bosonic atoms with coupled ground states in a one-dimensional optical lattice. Both the superfluid and Mott-insulator phases are investigated separately for ferromagnetic and antiferromagnetic interactions. Mode entanglement is also discussed in the Mott insulating phase. The role of a small but nonzero angle between the polarization vectors of counter-propagating lasers forming the optical lattice on quantum correlations is investigated as well.Comment: 18 pages, 8 figures. To be published in Journal of Physics

    Interaction broadening of Wannier functions and Mott transitions in atomic BEC

    Full text link
    Superfluid to Mott-insulator transitions in atomic BEC in optical lattices are investigated for the case of number of atoms per site larger than one. To account for mean field repulsion between the atoms in each well, we construct an orthogonal set of Wannier functions. The resulting hopping amplitude and on-site interaction may be substantially different from those calculated with single-atom Wannier functions. As illustrations of the approach we consider lattices of various dimensionality and different mean occupations. We find that in three-dimensional optical lattices the correction to the critical lattice depth is significant to be measured experimentally even for small number of atoms. Finally, we discuss validity of the single band model.Comment: A co-author(AMD) added, paper lengthened (7 pages, 8 figures now) to extend the description of the method and add discussion of its validit

    The Generic, Incommensurate Transition in the two-dimensional Boson Hubbard Model

    Full text link
    The generic transition in the boson Hubbard model, occurring at an incommensurate chemical potential, is studied in the link-current representation using the recently developed directed geometrical worm algorithm. We find clear evidence for a multi-peak structure in the energy distribution for finite lattices, usually indicative of a first order phase transition. However, this multi-peak structure is shown to disappear in the thermodynamic limit revealing that the true phase transition is second order. These findings cast doubts over the conclusion drawn in a number of previous works considering the relevance of disorder at this transition.Comment: 13 pages, 10 figure

    Variational Cluster Perturbation Theory for Bose-Hubbard models

    Full text link
    We discuss the application of the variational cluster perturbation theory (VCPT) to the Mott-insulator--to--superfluid transition in the Bose-Hubbard model. We show how the VCPT can be formulated in such a way that it gives a translation invariant excitation spectrum -- free of spurious gaps -- despite the fact that if formally breaks translation invariance. The phase diagram and the single-particle Green function in the insulating phase are obtained for one-dimensional systems. When the chemical potential of the cluster is taken as a variational parameter, the VCPT reproduces the dimension dependence of the phase diagram even for one-site clusters. We find a good quantitative agreement with the results of the density-matrix renormalization group when the number of sites in the cluster becomes of order 10. The extension of the method to the superfluid phase is discussed.Comment: v1) 10 pages, 6 figures. v2) Final version as publishe

    Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases

    Full text link
    Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and fractionally filled Mott Insulator (MI) phases in period-2 optical superlattices. In contrast to the quasimomentum distribution, this second order interferometry pattern exhibits high contrast fringes in the it insulating phases. Our detailed study of HBTI suggests that this interference pattern signals the various superfluid-insulator transitions and therefore can be used as a practical method to determine the phase diagram of the system. We find that in the presence of a confining potential the insulating phases become robust as they exist for a finite range of atom numbers. Furthermore, we show that in the trapped case the HBTI interferogram signals the formation of the MI domains and probes the shell structure of the system.Comment: 13 pages, 15 figure

    Atomic Bose-Fermi mixtures in an optical lattice

    Full text link
    A mixture of ultracold bosons and fermions placed in an optical lattice constitutes a novel kind of quantum gas, and leads to phenomena, which so far have been discussed neither in atomic physics, nor in condensed matter physics. We discuss the phase diagram at low temperatures, and in the limit of strong atom-atom interactions, and predict the existence of quantum phases that involve pairing of fermions with one or more bosons, or, respectively, bosonic holes. The resulting composite fermions may form, depending on the system parameters, a normal Fermi liquid, a density wave, a superfluid liquid, or an insulator with fermionic domains. We discuss the feasibility for observing such phases in current experiments.Comment: 4 pages, 1 eps figure, misprints correcte

    Glassy features of a Bose Glass

    Full text link
    We study a two-dimensional Bose-Hubbard model at a zero temperature with random local potentials in the presence of either uniform or binary disorder. Many low-energy metastable configurations are found with virtually the same energy as the ground state. These are characterized by the same blotchy pattern of the, in principle, complex nonzero local order parameter as the ground state. Yet, unlike the ground state, each island exhibits an overall random independent phase. The different phases in different coherent islands could provide a further explanation for the lack of coherence observed in experiments on Bose glasses.Comment: 14 pages, 4 figures

    Vortex configurations of bosons in an optical lattice

    Full text link
    The single vortex problem in a strongly correlated bosonic system is investigated self-consistently within the mean-field theory of the Bose-Hubbard model. Near the superfluid-Mott transition, the vortex core has a tendency toward the Mott-insulating phase, with the core particle density approaching the nearest commensurate value. If the nearest neighbor repulsion exists, the charge density wave order may develop locally in the core. The evolution of the vortex configuration from the strong to weak coupling regions is studied. This phenomenon can be observed in systems of rotating ultra-cold atoms in optical lattices and Josephson junction arraysComment: 4 pages, 4 figs, Accepted by Physics Review
    • …
    corecore