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Abstract. We have studied a system of ultracold fermionic potassium (40K)
atoms in a three-dimensional (3D) optical lattice in the vicinity of an s-wave
Feshbach resonance. Close to resonance, the system is described by a multi-
band Bose–Fermi Hubbard Hamiltonian. We derive an effective lowest-band
Hamiltonian in which the effect of higher bands is incorporated by a self-
consistent mean-field approximation. The resulting model is solved by means of
generalized dynamical mean-field theory. In addition to the BEC–BCS crossover,
we find a phase transition to a fermionic Mott insulator at half-filling, induced
by the repulsive fermionic background scattering length. We also calculate the
critical temperature of the BEC/BCS state and find it to be minimal at resonance.
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1. Introduction

The first experimental realizations of Bose–Einstein condensates (BEC) in dilute atomic gases
of rubidium [1], lithium [2] and sodium [3] atoms initiated a new field of condensed-matter
research, providing an ideal laboratory for comparing theoretical models and experimental
results with high accuracy. In particular, the important consequences of Bose–Einstein
condensation could be investigated, which up to 1995 had remained an elusive and inaccessible
phenomenon in experiments.

Not long after the first realization of BEC, ultracold fermionic gases were studied
experimentally as well. The first important results of quantum degeneracy in trapped
Fermi gases were obtained in 1999 at JILA [4] and later on by other groups [5, 6].
A breakthrough experiment in this field was the investigation of fermionic superfluidity at the
crossover between the BEC state and the Bardeen–Cooper–Schrieffer (BCS) state [7–11]. This
was made possible by the use of Feshbach resonances, which have become an indispensable
experimental tool for ultracold atom experiments. Feshbach resonances not only allow one
to tune the interatomic interaction with high precision, but also make it possible to increase
it to a level where the critical temperature becomes high enough for the investigation of
attraction-induced superfluidity. In contrast, away from resonance the critical temperature is
usually exponentially suppressed and experimentally inaccessible. The regime of strong, even
diverging interactions, the so-called unitarity region, on the other hand, defines a new field of
research where standard mean-field methods break down and the physics has to be described in
a non-perturbative way. Moreover, this system allows for the experimental investigation of the
BEC–BCS crossover: for negative scattering lengths the system is a BCS superfluid, whereas
for positive scattering lengths, fermionic atoms with opposite spin pair up to form a bosonic
molecular bound state. More recent experimental work has focused on the study of the effect of
spin imbalance on the BCS state, i.e. the case when an unequal number of fermions occupies
the two different spin states [12–15], as well as mixtures of fermions with unequal masses, such
as 6Li and 40K [16, 17].
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Figure 1. Schematic picture of the BEC–BCS crossover in an optical lattice. By
tuning the interaction strength between the two fermionic spin states, one obtains
a smooth crossover from a BEC regime of tightly bound bosonic molecules
(a) to a BCS regime of large Cooper pairs (c). In between these two extremes, one
encounters an intermediate crossover regime where the pair size is comparable
with the interparticle spacing (b). For the total fermionic filling one, the system
can undergo a phase transition to the Mott insulator phase (d).

Also, the effect of periodic potentials on trapped Fermi gases has been studied
experimentally [18–21]. Recently, evidence for a fermionic Mott insulator was obtained in a
system of repulsively interacting 40K fermions in an optical lattice [22, 23]. Optical lattices and
Feshbach resonances have been combined experimentally as well: the group at ETH Zürich
reported the production of 40K molecules in three-dimensional (3D) cubic optical lattices using
s-wave Feshbach resonances in early 2006 [19], but no evidence of a superfluid state in the
lattice was found until later that year, when superfluid 6Li was loaded in an optical lattice at
MIT where both a condensate and an insulating state were observed [20]. The results were
interpreted in terms of a superfluid-to-Mott insulator transition, for which a detailed theoretical
description is still lacking.

In this work, we study an ultracold mixture of fermionic atoms in two different hyperfine
states in a 3D optical lattice close to a Feshbach resonance. This system has all the
characteristics of the continuum BEC–BCS crossover described above: for magnetic field values
below the resonance, fermions with different spins form bosonic molecules (see figure 1). By
varying the magnetic field, the bosonic level is detuned relative to the fermionic one, which
changes the ratio of the densities of fermions and molecular bosons as well as the effective
interaction between the fermions. On top of this BEC–BCS crossover physics, which is familiar
from the system without lattice, new features emerge when an optical lattice is applied. The
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most prominent one is the occurrence of a fermionic Mott insulator for half-filled fermions
deep in the BCS regime, which is stabilized by the repulsive fermionic background scattering
length. As described below, we find a first-order transition between the BEC/BCS state and the
Mott insulator. For a total filling of two fermions per site, the BCS state competes against a band
insulating state [24–26].

The presence of an optical lattice allows one to utilize the powerful non-perturbative
methods that are available for lattice systems. Here we apply generalized dynamical mean-
field theory (GDMFT) [27, 28] to the system described above. However, GDMFT is a single-
band approach, whereas Feshbach-resonant interactions in an optical lattice lead to a multi-band
model [34–39]. We therefore first perform a mean-field decoupling of the higher bands, thereby
deriving an effective single-band Hamiltonian that is self-consistently coupled to the higher
bands.

The paper is organized as follows. In section 2, we introduce the microscopic model, and
in section 3, we introduce the Generalized Dynamical Mean-Field approach we used to solve
this model. In section 4, we present the result of our numerical calculations, and in section 5, we
present the concluding remarks. In the appendix, we describe in detail how the self-energy for
the resonantly interacting Bose–Fermi mixture studied here can be calculated in the dynamical
mean-field framework.

2. Microscopic model

The study of ultracold fermions close to a Feshbach resonance is a challenging problem. Due
to the fact that exactly on resonance the scattering length is infinite, the standard fermionic
Hubbard Hamiltonian cannot be defined. To solve this problem, it is necessary to formulate a
two-channel Hamiltonian by separating out the resonance state and treating it explicitly [40].
The nonresonant contributions give rise to a background scattering length. As the Feshbach
resonance occurs due to a coupling with the bosonic molecular state, the additional degrees of
freedom introduced in the two-channel theory are bosons [40].

An ultracold atomic gas of fermionic atoms and molecular bosons close to a Feshbach
resonance in the presence of an optical lattice is thus well described by a Bose–Fermi Hubbard
model [35, 41]. In our calculation, we assume the molecular bosons to be in the lowest band. For
the fermions, on the other hand, we also have to take into account the higher bands, in order to
properly incorporate the two-body physics associated with the Feshbach resonance [35, 36, 42].
Since the bandwidth is much smaller than the band gap, we approximate the higher bands to be
flat and only take into account the full band structure for the lowest band. Moreover, we neglect
the interaction between fermions in higher bands with each other and with the bosons. This is
justified because the filling in the higher bands is very small, so that interaction effects are also
small. The Hamiltonian thus has the following form:

Ĥ= Ĥ0
f + Ĥb + Ĥ0

fb +
∞∑

l=1

(Ĥl
f + Ĥl

fb), (1)

Ĥ0
f = −tf

∑
〈i j〉

ĉ†
iσ,0ĉ jσ,0 + Uf

∑
i

n̂f
i,↑,0n̂f

i,↓,0 −

(
µ −

3h̄ω

2

)∑
i

n̂f
i,0, (2)

Ĥb = −tb

∑
〈i j〉

b̂†
i b̂ j +

Ub

2

∑
i

n̂b
i (n̂

b
i − 1) −

(
2µ − δ −

3h̄ω

2

)∑
i

n̂b
i , (3)
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Ĥ0
fb = Ufb

∑
i

n̂b
i n̂f

i,0 + g0

∑
i

(b̂†
i ĉi↑,0ĉi↓,0 + h.c.), (4)

Ĥl
f =

∑
i

((
2l +

3

2

)
h̄ω − µ

)
n̂f

i,l, (5)

Ĥl
fb = gl

∑
i

(b̂†
i ĉi↑,l ĉi↓,l + h.c.), (6)

where ĉ†
iσ,l is the creation operator of a fermion with spin σ for the lth band on lattice site i . b̂†

i is
the creation operator of a boson at site i . n̂f

iσ,l = ĉ†
iσ,l ĉiσ,l and n̂f

i,l = n̂i↑,l + n̂i↓,l are the fermionic

number operators, and n̂b
i = b̂†

i b̂i is the bosonic number operator. tf and tb are the tunneling
amplitudes for fermions and bosons, respectively. Uf, Ub and Ufb are the Fermi–Hubbard-,
Bose–Hubbard and Bose–Fermi–Hubbard interactions, respectively. These interactions arise
due to the background scattering lengths. Furthermore, µ is the chemical potential, δ is the
detuning of the bosonic level and ω is the frequency of the harmonic oscillator associated with

an optical lattice well. Finally, gl = g0

√
L (1/2)

l (0) is the Feshbach coupling to the lth band of

the lattice, where g0 is the Feshbach coupling for the lowest Hubbard band and L (1/2)

l (0) is the
generalized Laguerre polynomial. Choosing the Feshbach couplings in this way guarantees that
the two-body physics associated with the Feshbach resonance is incorporated exactly [35, 42].

The parameters of the generalized Hubbard Hamiltonian (1) are given by:

tb(f) '
4

√
π

Eb(f)
r

(
V0

Eb(f)
r

)3/4

exp

[
−2

√
V0

Eb(f)
r

]
, (7)

Ub(f) '

√
8

π
kab(f)E

b(f)
r

(
V0

Eb(f)
r

)3/4

, (8)

Ufb '
4

√
π

kafb Eb
r

1 + mb/mf

(1 +
√

mb/mf)3/2

(
V0

Eb
r

)3/4

, (9)

g = h̄

√
4πaf1B1µmag

mf

(
mfω

2π h̄

)3/4

, (10)

δ = 1µmag(B − B0). (11)

Here, E f(b)
r = h2/2λ2mf(b) is the recoil energy, V0 is the amplitude of the optical lattice

potential and λ is the laser wavelength. af, ab and afb are the fermion–fermion, boson–boson
and fermion–boson background scattering lengths. In our calculation, we approximate the
background boson–boson and the Bose–Fermi scattering lengths by ab = 0.6af [43] and afb =

1.2af [44]. Furthermore, B is the magnetic field, and B0 and 1B are the position of the Feshbach
resonance and its width, respectively. 1µmag is the difference in the magnetic moment between
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the closed and open channels of the Feshbach resonance. Finally, mf and mb are the respective
masses of the fermions and bosons.

The Hamiltonian (1) can be simplified by the following rescaling:

µ̄ = µ −
3h̄ω

2
, (12)

δ̄ = δ −
3h̄ω

2
, (13)

such that the factor 3h̄ω/2 disappears.

3. Method

3.1. Derivation of the effective single-band Hamiltonian

The multi-band Hamiltonian derived so far is very complicated, since it involves both strong
correlations and many bands. Simply neglecting the higher bands would lead to an incorrect
description close to the Feshbach resonance, since the Feshbach parameter g is very large and
even exceeds the band gap [35]. However, the filling of fermions in the higher bands is strongly
suppressed by the band gap. This allows us to perform a mean-field decoupling in the higher
bands [35]. The lowest band is left untouched in this procedure since the fermionic filling can
be large there.

We thus perform the following decoupling for l > 0 on each site:

Ĥli
fb = gl(〈b̂

†
i 〉ĉi↑,l ĉi↓,l + b̂†

i 〈ĉi↑,l ĉi↓,l〉 + h.c.). (14)

This step implies that the lowest band and the higher bands are only coupled in a mean-field way.
They can thus be diagonalized separately, but are coupled by the mean-field self-consistency
relations. The full Hamiltonian is now given by

Ĥ= Ĥ0
f + Ĥb + Ĥ0

fb +
∑

i

Ĥ′

b(i) +
∑

l,i

Ĥli
fb , (15)

where the following terms are added to the bosonic part of the lowest band Hamiltonian:

Ĥ′

b(i) =

∑
l=1

gl(b̂
†
i 〈ĉi↑,l ĉi↓,l〉 + h.c.) = −(1b̂†

i + h.c.), (16)

where the mean-field 1 has been defined as 1 = −
∑

∞

l=1 gl〈ĉi↑,l ĉi↓,l〉. For each of the higher
bands l > 0 we obtain the following Hamiltonian (here we suppress the site index i):

Ĥl
f =

(
ĉ†

l↑

ĉl↓

)(
2lh̄ω − µ̄ −gl〈b̂〉

−gl〈b̂†
〉 −(2lh̄ω − µ̄)

)(
ĉl↑

ĉ†
l↓

)
. (17)

The system described by equations (15)–(17) needs to be solved self-consistently with respect
to the mean fields 〈b̂〉 and 1.

To diagonalize the Hamiltonian (17), one has to perform the following Bogoliubov
transformation:(

ul −vl

vl ul

)(
2lh̄ω − µ̄ −gl〈b̂〉

−gl〈b̂†
〉 −(2lh̄ω − µ̄)

)(
ul −vl

vl ul

)−1

=

(
−ωl 0

0 wl

)
, (18)
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where

ωl =

√
(2lh̄ω − µ̄)2 + g2

l |〈b̂〉|2, (19)

u2
l =

1

2
+

2lh̄ω − µ̄

2ωl
, (20)

v2
l =

1

2
−

2lh̄ω − µ̄

2ωl
, (21)

ulvl =
gl〈b̂〉

2ωl
. (22)

This leads to the following expectation values:

nF
l = 2v2

l + 2(u2
l − v2

l ) f (ωl) = 1 −
2lh̄ω − µ̄

ωl
tanh

( ωl

2kT

)
, (23)

|〈ĉl↑ĉl↓〉| = |ulvl | tanh
( ωl

2kT

)
=

∣∣∣∣∣gl〈b̂〉

2ωl

∣∣∣∣∣ tanh
( ωl

2kT

)
, (24)

where f (ωl) is the Fermi function and T is the temperature. We use absolute values in the
equation for 〈ĉl↑ĉl↓〉 because of the ambiguity of the sign, which arise from the fact that still a
divergence has to be subtracted (see below).

The total number of fermions is equal to

nF
tot = nF

0 +
∞∑

l=1

(
1 −

2lh̄ω − µ̄

ωl
tanh

( ωl

2kT

))
. (25)

This is a converging sum, which can be evaluated numerically.
From equation (16) it follows that we have to evaluate the sum∑

l=1

gl〈ĉl↑ĉl↓〉 = ±〈b̂〉

∑
l=1

g2
l

2ωl
tanh

( ωl

2kT

)
, (26)

which is divergent. This divergence always arises in the gap equation of the BCS model when
the T -matrix is approximated by a delta-potential [35, 42]. One way to solve this problem is by
using a pseudo-potential instead of the delta-potential [42]. Here, however, we follow [35] and
explicitly isolate the diverging contribution from the sum.

First, we note that for large l, ωl can be approximated by ωl = 2lh̄ω − µ̄ and
tanh(ωl/2kT ) ' 1. Therefore

∑
l=1

g2
l

2ωl
tanh

( ωl

2kT

)
'

(
N∑

l=1

g2
l

2ωl
tanh

( ωl

2kT

)
+

∞∑
l=N+1

g2
l

2(2lh̄ω − µ̄)

)

=

(
N∑

l=1

g2
l

2ωl
tanh

( ωl

2kT

)
−

N∑
l=0

g2
l

2(2lh̄ω − µ̄)
+

∞∑
l=0

g2
l

2(2lh̄ω − µ̄)

)
. (27)

Here, N is a large integer (in our calculation we took N = 500).
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The first two terms of equation (27) are finite sums, but the last term diverges. This sum is
known from the literature [42, 45]. To separate the diverging part, we have to take the following
limit:

∞∑
l=0

g2
l

2(2lh̄ω − µ̄)
=

∞∑
l=0

g2
0 L (1/2)

l (0)

2(2lh̄ω − µ̄)
= lim

r→0

∞∑
l=0

g2
0 L (1/2)

l (r)

2(2lh̄ω − µ̄)

= − lim
r→0

(
g2

0

√
π0(−µ̄/2h̄ω)/0(−µ̄/2h̄ω − 1/2)

2h̄ω
−

√
π

r
+O(r)

)
. (28)

Since the diverging part
√

π/r is independent of the model parameters, we can cure the
divergence by neglecting this term [35, 42]. Doing so, we obtain

1 = −

∞∑
l=1

gl〈ĉl↑ĉl↓〉 = ±〈b̂〉

(
g2

0

√
π0(−µ̄/h̄ω)/0(−µ̄/h̄ω − 1/2)

2h̄ω

+
N∑

l=0

g2
l

2(2lh̄ω − µ̄)
−

N∑
l=1

g2
l

2ωl
tanh

( ωl

2kT

))
. (29)

We now fix the sign by requiring 1 > 0, since this solution minimizes the (free) energy.
Summarizing, we have reduced the multi-band problem to an effective single-band

Hamiltonian:

Ĥ= Ĥ0
f + Ĥb + Ĥ′

b + Ĥ0
fb, (30)

where Ĥ0
f , Ĥb, Ĥ0

fb and Ĥ′

b are given by equations (2), (3), (4) and (16), respectively.
The chemical potential µ has to be adjusted such that the total filling is equal to the desired

value ntot:

2nb
0 + nF

0 +
∞∑

l=1

(
1 −

2lh̄ω − µ̄

ωl
tanh

( ωl

2kT

))
= ntot. (31)

This leads to the following self-consistency loop: we start from an initial guess of the
superfluid order parameter 〈b̂〉 and calculate 1 using equation (29). As a result, we know
all parameters in the Hamiltonian (30), and we can find its eigenvalues and eigenvectors and
correspondingly calculate new correlation functions, including the superfluid order parameter
〈b̂〉. With this step, the self-consistency loop is closed.

It is worth noting that the effective single-band Hamiltonian we have derived here is
different from the effective single-band model in terms of the dressed particles derived in
other approaches [36, 39]: the bosons and fermions in our Hamiltonian correspond to the bare
particles in the lowest band.

3.2. GDMFT

To analyze the Hamiltonian (30), we use GDMFT that is explained in detail in [27, 28]. Here we
only mention that within GDMFT one considers a single site that is self-consistently coupled
to a dynamical fermionic bath corresponding to DMFT [29, 30] and a static bosonic mean-field
corresponding to bosonic Gutzwiller [31–33]. These are the leading order contributions in a
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1/z-expansion of the effective action (z being the lattice coordination number). Hence GMDFT
is exact in infinite dimensions and is expected to be a good approximation for the cubic lattice
considered here, for which z = 6. The typical accuracy for low-temperature expectation values
is around 20%.

In the specific case considered here, the system is described by a generalized single-
impurity Anderson model (GSIAM) with the following Anderson Hamiltonian:

ĤAnd
= ĤAnd

f + ĤAnd
fb + ĤAnd

b ,

ĤAnd
b = −[(ztbϕ + 1)b̂† + h.c.] +

Ub

2
n̂b(n̂b

− 1) − (2µ̄ − δ̄)n̂b,

ĤAnd
fb = Ufbn̂fn̂b + g0(b̂

†
i ĉ

↑
ĉ
↓

+ h.c.),

ĤAnd
f = −µ̄n̂f + Ufn̂f

↑
n̂f

↓
+
∑
k,σ

{εk â†
kσ âkσ + Vk(ĉ

†
σ âkσ + h.c.)} +

∑
k

Wk(â
†
k↑

â†
k↓

+ h.c.),

(32)

where z is the lattice coordination number and ϕ = 〈b̂〉 is the superfluid order parameter. k
labels the noninteracting orbitals of the effective bath, Vk are the corresponding fermionic
hybridization matrix elements, Wk describes the superfluid properties of the bath and a†

kσ is
the creation operator of a fermion in the kth orbital of the bath with spin σ . n̂fσ = ĉ†

σ cσ is the
fermionic number operator and n̂ = n̂f↑ + n̂f↓.

To solve the Anderson Hamiltonian, we use exact diagonalization as the impurity
solver [46–49]. In this algorithm, the infinite number of orbitals in Hamiltonian (32) is truncated
and only a finite number of ns orbitals is considered. The resulting finite-size problem is
fundamentally different from the finite-size problem of a finite number of lattice sites of the
original Hubbard model, and the truncation procedure can be viewed using a finite number
of parameters (energy scales) to describe the local dynamics encoded in the Weiss Green’s
function:

G−1
And(iωn) = G−1

σ,And(iωn) = iωn + µ̄ +
ns∑

l=1

V 2
lσ

iωn + εl

ε2
l + ω2

n + W 2
l

, (33)

F−1
And(iωn) =

ns∑
l=1

V 2
l Wl

ε2
l + ω2

n + W 2
l

, (34)

where β is the inverse temperature and ωn = (2n + 1)π/β are the Matsubara frequencies.
To close the self-consistency loop by using the lattice Dyson equation, we calculate the

normal and superfluid Green’s functions, which can be written as follows [46]:

G(iωn) = Gσ (iωn) =

∫
∞

−∞

dεD(ε)
ζ ∗

− ε

|ζ − ε|2 + 62
SC

, (35)

F(iωn) = −6SC(iωn)

∫
∞

−∞

dεD(ε)
1

|ζ − ε|2 + 62
SC

, (36)

where ζ = iωn + µ̄ − 6(iωn) and D(ε) is the noninteracting density of states of the cubic
lattice. 6(iωn) and 6SC(iωn) are the normal and superfluid self-energies, which as shown in
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the appendix can be expressed via a set of higher-order Green’s functions:

6(iωn) = 6σ (iωn) =
(Uf Qffσ (iωn) + Ufb Qfbσ (iωn) + σgQ∗

gσ̄ σ (iωn))G∗

σ̄ (iωn)

Gσ (iωn)G∗

σ̄ (iωn) + F(σ iωn)F∗(σ̄ iωn)

+
(σUf Qff,σ σ̄ (iωn) + σUfb Qfbσ σ̄ (iωn) + gQ∗

gσ̄ (iωn))F∗(σ̄ iωn)

Gσ (iωn)G∗

σ̄ (iωn) + F(σ iωn)F∗(σ̄ iωn)
, (37)

6SC(iωn) =
(Uf Qff↑(iωn) + Ufb Qfb↑(iωn) + gQ∗

g↓↑
(iωn))F(iωn)

G↑(iωn)G∗

↓
(iωn) + F(iωn)F∗(−iωn)

−
(Uf Qff,↑↓(iωn) + Ufb Qfb↑↓(iωn) + gQ∗

g↓
(iωn))G↑(iωn)

G↑(iωn)G∗

↓
(iωn) + F(iωn)F∗(−iωn)

. (38)

Here, G(iωn) = 〈〈cσ,0, c†
σ,0〉〉ω and F(iωn) = 〈〈c

↑,0, c
↓,0〉〉ω are the normal and superfluid

single-particle Green’s functions. In addition, we have also defined the following additional
interacting Green’s functions: Qffσ (iωn) = 〈〈 f̂ σ f̂ †

σ̄ f̂ σ̄ , f̂ †
σ 〉〉ω, Qffσ σ̄ (iωn) = 〈〈 f̂ σ f̂ †

σ̄ f̂ σ̄ , f̂ σ̄ 〉〉ω,
Qfbσ (iωn) = 〈〈 f̂ σ b̂†b̂, f̂ †

σ 〉〉ω, Qfbσ σ̄ (iωn) = 〈〈 f̂ σ b̂†b̂, f̂ σ̄ 〉〉ω, Qgσ (iωn) = 〈〈 f̂ σ b̂†, f̂ †
σ 〉〉ω and

Qgσ σ̄ (iωn) = 〈〈 f̂ σ b̂†, f̂ σ̄ 〉〉ω. Here,

〈〈 Â, B̂〉〉ω = −
1

Z

∑
n,m

〈n| Â|m〉〈m|B̂|n〉
e−βEn + e−βEm

Em − En − iωn
(39)

and

Z =

∑
n

e−βEn (40)

is the partition function.
The relation between the Weiss field and the Green’s function is given by the local Dyson

equation:

Ĝ−1
ex (iωn) = 6̂(iωn) + Ĝ−1(iωn), (41)

where

Ĝ(iωn) =

(
G(iωn) F(iωn)

F(iωn) −G∗(iωn)

)
(42)

is the matrix of interacting Green’s functions,

6̂(iωn) =

(
6(iωn) 6SC(iωn)

6SC(iωn) −6∗(iωn)

)
(43)

is the self-energy matrix and

Ĝex(iωn) =

(
Gex(iωn) Fex(iωn)

Fex(iωn) −G∗

ex(iωn)

)
(44)

is the matrix of Weiss Green’s functions.
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To determine new parameters for the Anderson Hamiltonian, we fit the Weiss functions
calculated from (33) and (34) to the ones calculated from the eigenstates of the Anderson
Hamiltonian via the local Dyson equation (41). We use a steepest descent method with the
following norm:

χ =
1

2(Nmax + 1)

Nmax∑
n=0

1

2n + 1

(
|G−1

And(iωn) −G−1
ex (iωn)|

2 + |F−1
And(iωn) −F−1

ex (iωn)|
2
)
, (45)

where Nmax is the number of Matsubara frequencies taken into account.
The minimization procedure works as follows. We start from an initial guess of the GSIAM

parameters (εlσ , Vlσ and Wl), and then, knowing the local Green’s functions calculated from
equation (39) and the self-energies calculated from (37) and (38), we calculate the lattice
Green’s function according to equations (35) and (36). Subsequently, using the Dyson equation
(41) we can calculate the Weiss Green’s functions G−1

σ,ex(iωn) and F−1
σ,ex(iωn). The next step is

to fit this result by the parameterization in equations (33) and (34) and thus to find a new set
of parameters for the GSIAM. These new parameters serve as input for the next iteration. This
procedure is repeated until convergence is reached.

3.3. Calculation of the critical temperature

The combination of the mean-field approximation in the higher bands and GDMFT explained
so far, however, leads to a problem. Both approximations involve the superfluid order parameter
〈b̂i〉. The mean-field approximation for the higher bands implies that the local correlator
〈b̂†

i ĉi↑,l ĉi↓,l〉 is approximated by 〈b̂†
i 〉〈ĉi↑,l ĉi↓,l〉. The GDMFT scheme, on the other hand,

involves the approximation to replace the nonlocal correlator 〈b̂†
i b̂ j〉 by 〈b̂†

i 〉〈b̂ j〉. This means
that 〈b̂〉 both measures the local phase coherence between bosons and fermions and the nonlocal
bosonic long-range order. However, these are two very different quantities that generally cannot
be described by a single mean-field order parameter. At zero temperature, this problem is not
very severe, because in this case one expects both long-range order and on-site boson–fermion
coherence, so that 〈b̂〉 is large for both reasons. At finite temperature, however, this becomes
a real problem, because the bosonic long range order is expected to vanish at temperatures of
the order of the bosonic hopping tb. The local boson–fermion coherence, on the other hand,
persists for much higher temperatures, since the coupling g is orders of magnitude larger than
tb. Indeed, we find that, in the approximation outlined above, the full GDMFT calculations are
in good agreement with a single-site approximation. In the single-site approach, the impurity
site couples neither to the fermionic nor to the bosonic bath and long-range order cannot be
inferred. The critical temperature obtained from this calculation can be identified with the pair
breaking temperature Tpair, which is much higher than the relevant temperature in experiments.

The scheme explained in the previous subsection cannot therefore be used to infer the
critical temperature for superfluid long-range order. In order to do so, we have to modify the
approximation and remove the ambiguous nature of the order parameter 〈b̂〉. This is made
possible by the observation that the term 1b̂† in the Hamiltonian merely renormalizes the self-
energy of the bosons: in the BEC regime the bosons are in a coherent state and this term is
equivalent to a shift of the bosonic chemical potential. This is also clear from the treatment
in [35], where terms from higher bands enter the bosonic self-energy. To make this more explicit,
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we write

1 = −

∞∑
l=1

gl〈ĉl↑ĉl↓〉 = ±〈b̂〉

(
g2

0

√
π0(−µ̄/h̄ω)/0(−µ̄/h̄ω − 1/2)

2h̄ω

+
N∑

l=0

g2
l

2(2lh̄ω − µ̄)
−

N∑
l=1

g2
l

2ωl
tanh

( ωl

2kT

))
≡ 〈b̂〉1′. (46)

We can therefore replace the term

−(1b̂† + h.c.) = −(1′
〈b̂〉b̂† + h.c.) (47)

in the Hamiltonian by

−1′b̂†b̂ , (48)

such that terms from the higher bands only renormalize the chemical potential. We remark
here that this might look like an additional approximation. However, one has to keep in mind
that the term connecting 1 to the bosonic creation operator originated from the mean-field
approximation in the higher bands. By treating the contribution of higher bands within the
bosonic self-energy, we are therefore restoring part of the mean-field approximation made in
the previous step. Indeed, by using second-order perturbation theory in the couplings to higher
bands (which is justified if the band energy exceeds the Feshbach coupling), we can also
obtain this correction directly as part of the bosonic self-energy, without invoking a mean-field
decoupling.

This improved approximation for treating higher bands gives for T = 0 similar results
as before; in particular the position of the transition to the Mott insulator is in good
approximation the same. The superfluid order parameter is smaller, as expected. However,
for nonzero temperatures, this improved approximation scheme allows for a calculation of the
critical temperature for superfluid long-range order, which was not possible in the previous
approximation.

4. Results

We study a mixture of potassium atoms (40K) and Feshbach molecules in a 3D optical
lattice. The on-site harmonic oscillator frequency is chosen to be ω = 2π × 58275 Hz, which
corresponds to a lattice with wavelength λ = 806 nm and a Rabi frequency of �R = 2π ×

1.43 GHz. The Feshbach resonance considered here is at B = 202.1 G and the width of the
resonance is 7.8 G [50]. The difference between the magnetic moments of the closed and open
channels of the Feshbach resonance is 1µ = 16/9µB, where µB is the Bohr magneton. The
total filling per lattice site in our calculation is ntot = 1.

4.1. Zero temperature

First, we consider the case of zero temperature. Our calculations for the ground state are
summarized in figure 2. Deep in the BEC regime only bosonic molecules are present. When
the magnetic field is increased, close to resonance the number of fermions is increasing and the
number of bosons decreasing. Above the resonance we mainly have fermions and the number of
bosons is small. Both fermions and bosons are superfluid. We remark again that here we describe
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(a) (b) 

superfluid

superfluid
mott insulator mott insulator

Figure 2. Bosonic and fermionic filling (a) and superfluid order parameters
(b) as a function of magnetic field B for T = 0. The dotted line corresponds to the
Feshbach resonance, whereas the dashed line indicates the phase transition from
the superfluid phase to the Mott insulator phase. The magnetic field is measured
in units of Gauss.

the physics in terms of bare bosons and fermions: in terms of dressed particles as in [35], these
are still molecular bosons and the BEC–BCS crossover takes place when the bosonic self-energy
crosses twice the Fermi energy [35]. However, in the case of half-filled fermions, this crossover
is intercepted by a first-order phase transition to a fermionic Mott insulator state, which happens
at a critical value of the magnetic field of B = 249 G. Calculations that include only the lowest
band of the Bose–Fermi–Hubbard model (as well as with one and two excited bands) yield this
transition to the Mott insulator phase already close to the Feshbach resonance at B ' 205 G
(results not shown). This implies that, to capture the superfluid region 205 T. B < 249 T,
higher bands that renormalize the bosonic self-energy are crucial.

Another point worth noting is the first-order nature of the transition to the Mott insulating
state. In contrast, if one integrates out the bosonic degree of freedom and describes the Feshbach
resonance in terms of an effective, attractive interaction between the fermions within a single-
channel model for the lowest band, one finds a different scenario. In this case, the induced
attractive interaction dominates, until it is cancelled by the repulsive background interaction.
This means that within the single-channel approximation, one finds a regime with a normal
Fermi-liquid phase in between the BEC/BCS phase and the Mott insulator, which is absent in
our phase diagram. This directly indicates that the effect of higher bands is crucial to capture
the first-order transition between the superfluid and insulator phases.

4.2. Nonzero temperature

Having clarified the ground state phase diagram, we now consider finite temperature. In
particular, we investigate the critical temperature for the transition to the normal state.
Deep in the BEC regime, the critical temperature is constant (Tc ≈ 0.21tf) and completely
determined by the properties of the bosons: the bosonic hopping parameter tb, the interbosonic
background scattering length ab and the bosonic density. Only very close to resonance the
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(a) (b) 

superfluid superfluid

normal

Figure 3. Finite temperature results. In (a) we plot the fermionic superfluid order
parameter as a function of temperature T for different magnetic fields above the
resonance. In (b) we show the phase diagram. The blue solid line separates the
superfluid phase from the normal phase. Here temperature is measured in units
of the fermionic hopping tf.

critical temperature suddenly drops (see figure 3). This coincides with the magnetic field value
for which fermions enter the system. On the BCS side of the resonance, the critical temperature
depends on the magnetic field and increases with B (see figure 3). This implies that at resonance
the critical temperature is minimal. This is in sharp contrast to the situation where no lattice is
present, in which case the critical temperature is maximal close to resonance.

This surprising fact can be understood from the behavior of the critical temperature in the
single-band attractive Hubbard model [51, 52]. In this model, the critical temperature is low for
both very large and very small attraction and has a maximum in between. The reason for the low
critical temperature at small attraction is the conventional exponential suppression of Tc in the
BCS regime. For strong attraction the critical temperature decreases again because the fermions
start forming bound pairs with a greatly enhanced effective mass. Identifying the resonance
position with the case of very large attraction, this explains the low critical temperature at this
point. When moving away from resonance, the effective attraction induced by the Feshbach
resonance becomes weaker and hence the critical temperature increases again. Far away from
resonance one would therefore expect to find a maximum of the critical temperature, after
which it decreases again because the BCS regime of weak attraction is entered. However, due
to the transition into the Mott insulator phase for the unit filling considered here, we cannot
see the maximum of the critical temperature. Estimating the induced attractive interaction at the
transition point to the Mott insulator by assuming it to be equal to the repulsive background
interaction, this indeed gives a value for the induced attractive interaction that is larger (in
absolute value) than the position of the maximum in the single-band attractive Hubbard
model [51, 52].

Our calculation also shows that, on both sides of the resonance, the ratio 〈c↑c↓〉/〈b†
〉 as a

function of the temperature for fixed values of the magnetic field is constant. This means that
the on-site Bose–Fermi coherence is not affected by the temperature for the low temperatures
considered here.
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5. Summary

We have studied ultracold fermionic 40K atoms in a 3D optical lattice close to a Feshbach
resonance. We derived an effective description in terms of a Bose–Fermi–Hubbard model,
in which the molecular degree of freedom is explicitly present. Our calculations show, in
agreement with [35], that the effect of higher bands is crucial for a correct description of
the Feshbach physics. We therefore take into account the fermionic occupation of higher
bands.

To solve the strongly interacting multi-band problem, we decouple the higher bands from
the lowest one via a mean-field decoupling and reduce the Hamiltonian to an effective single-
band Bose–Fermi–Hubbard model, which is self-consistently coupled to the higher bands. To
solve this resulting model we use GDMFT.

The low-temperature physics close to the Feshbach resonance is very rich. Upon changing
the magnetic field, the ratio of fermionic and bosonic densities changes. Below the resonance the
system is mainly occupied by molecular bosons forming a condensate. Close to resonance the
number of bosons decreases, whereas the number of fermions increases. The fermions are in
the superfluid phase. This resembles the BEC–BCS crossover close to a Feshbach resonance
without an optical lattice. In addition, for the unit total filling considered here, we found a
transition into the fermionic Mott insulator phase when the magnetic field is increased even
further. The Mott insulator phase is stabilized by the repulsive fermionic background scattering,
which at large magnetic fields overcomes the attractive interaction induced by the Feshbach
resonance. The phase transition into the Mott insulator is found to be of first order. We found
that higher bands are crucial for a quantitatively correct prediction of the transition point.

We also calculated the critical temperature of the BEC/BCS superfluid phase across the
resonance. Below resonance the critical temperature is independent of the magnetic field, until
it sharply drops close to resonance. Above the resonance the critical temperature increases again,
leading to the remarkable result of a minimal critical temperature at resonance.
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Appendix. Derivation of the self-energy for the Bose–Fermi mixture

In this appendix, we evaluate the self-energy via correlation functions. For this purpose, we use
the equation of motion, which in general has the following form:

iωn〈〈 Â, B̂〉〉ω + 〈〈[Ĥ, Â]−, B̂〉〉ω = 〈[ Â, B̂]η〉. (A.1)

Here, ωn are the Matsubara frequencies and 〈〈 Â, B̂〉〉ω is the general form of the Green’s
function, with the usual notation [ Â, B̂]± ≡ Â B̂ ± B̂ Â; the plus sign applies when both
operators are fermionic; otherwise the minus sign is used.
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For the resonantly interacting Bose–Fermi mixture, the generalized single-impurity
Anderson Hamiltonian has the following form:

ĤAnd
= −

∑
σ

µ f σ n̂f
σ + Ufn̂

f
↑
n̂f

↓
+ Ufbn̂fn̂b + g( f̂ †

↓
f̂ †

↑
b̂ + h.c.) + ĤAnd

b

+
∑
kσ

Vkσ ( f̂ †
σ ĉkσ + h.c.) +

∑
kσ

εkσ ĉ†
kσ ĉkσ +

∑
k

Wk(ĉ
†
k↑

ĉ†
k↓

+ h.c.), (A.2)

where f̂ †
σ and ĉ†

kσ are the fermionic creation operators on the ‘impurity site’ and in the band,
respectively. b̂† is the bosonic creation operator on the impurity site. n̂f

= n̂f
↑

+ n̂f
↓

=
∑

σ f̂ †
σ f̂ σ ,

n̂b
= b̂†b̂ and ĤAnd

b is the bosonic part of the Hamiltonian.
To calculate the self-energy, we first evaluate the following commutator relations:

[ĤAnd, f̂ σ ]− = µ f σ f̂ σ − Uf f̂ σ f̂ †
σ̄ f̂ σ̄ − Ufb f̂ σ b̂†b̂ + σg f̂ †

σ̄ b̂ −

∑
k

Vkσ ĉkσ , (A.3)

[ĤAnd, f̂ †
σ ]− = −µ f σ f̂ †

σ + Uf f̂ †
σ f̂ †

σ̄ f̂ σ̄ + Ufb f̂ †
σ b̂†b̂ − σg f̂ σ̄ b̂† +

∑
k

Vkσ ĉ†
kσ , (A.4)

[ĤAnd, ĉkσ ]− = −εkσ ĉkσ − Vkσ f̂ σ − σ Wk ĉ†
kσ̄ , (A.5)

[ĤAnd, ĉ†
kσ ]− = εkσ ĉ†

kσ + Vkσ f̂ †
σ + σ Wk ĉkσ̄ , (A.6)

where σ̄ = −σ .
Now we use the equation of motion (A.1) for the case when Â = f̂ σ and B̂ = f̂ †

σ . In
combination with the commutation relation (A.3), we obtain

(iωn + µ f σ )〈〈 f̂ σ , f̂ †
σ 〉〉ω − Uf〈〈 f̂ σ f̂ †

σ̄ f̂ σ̄ , f̂ †
σ 〉〉ω − Ufb〈〈 f̂ σ b̂†b̂, f̂ †

σ 〉〉ω + σg〈〈 f̂ †
σ̄ b̂, f̂ †

σ 〉〉ω

−

∑
k

Vkσ 〈〈ĉkσ , f̂ †
σ 〉〉ω = 1. (A.7)

To calculate 〈〈ĉkσ , f̂ †
σ 〉〉ω, we again use the equation of motion (A.1), but in this case with

Â = ĉkσ and B̂ = f̂ †
σ . With equation (A.5), we obtain the following relation:

(iωn − εkσ ) 〈〈ĉkσ , f̂ †
σ 〉〉ω − Vkσ 〈〈 f̂ σ , f̂ †

σ 〉〉ω − σ Wk〈〈ĉ
†
kσ̄ , f̂ †

σ 〉〉ω = 0. (A.8)

Finally, to calculate 〈〈ĉ†
kσ̄ , f̂ †

σ 〉〉ω, we use equation (A.1) with Â = ĉ†
kσ̄ and B̂ = f̂ †

σ , which
results in

(iωn + εkσ̄ ) 〈〈ĉ†
kσ̄ , f̂ †

σ 〉〉ω + Vkσ̄ 〈〈 f̂ †
σ̄ , f̂ †

σ 〉〉ω − σ Wk〈〈ĉkσ , f̂ †
σ 〉〉ω = 0. (A.9)

From equations (A.8) and (A.9), we derive

〈〈ĉkσ , f̂ †
σ 〉〉ω =

Vkσ (iωn + εkσ̄ )

(iωn − εkσ )(iωn + εkσ̄ ) − W 2
k

〈〈 f̂ σ , f̂ †
σ 〉〉ω

−
σ Vkσ̄ Wk

(iωn − εkσ )(iωn + εkσ̄ ) − W 2
k

〈〈 f̂ †
σ̄ , f̂ †

σ 〉〉ω. (A.10)
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Now we combine equation (A.10) with (A.7) and obtain

(iωn + µ f σ − 1σ (iωn))Gσ (iωn) − 1SC(σ iωn)F∗(−σ iωn) − Uf Qffσ (iωn)

−Ufb Qfbσ (iωn) − σgQ∗

gσ̄ σ (iωn) = 1. (A.11)

Note that 〈〈 f̂ σ , f̂ †
σ 〉〉ω ≡ Gσ (iωn) is the normal Green’s function and 〈〈 f̂

↑
, f̂

↓
〉〉ω ≡ F(ω) the

superfluid Green’s function. We also define

1σ (iωn) = 1∗

σ (−iωn)

= −

∑
k

V 2
kσ

iωn + εkσ̄

(εkσ − iωn)(εkσ̄ + iωn) + W 2
k

, (A.12)

1SC(iωn) = 1∗

SC(−iωn)

=

∑
k

Vk↑Vk↓Wk

(εk↑ − iωn)(εk↓ + iωn) + W 2
k

, (A.13)

which are the normal and the superfluid hybridization functions, respectively, and the fol-
lowing correlation functions: Qffσ (iωn) = 〈〈 f̂ σ f̂ †

σ̄ f̂ σ̄ , f̂ †
σ 〉〉ω, Qffσ σ̄ (iωn) = 〈〈 f̂ σ f̂ †

σ̄ f̂ σ̄ , f̂ σ̄ 〉〉ω,
Qfbσ (iωn) = 〈〈 f̂ σ b̂†b̂, f̂ †

σ 〉〉ω, Qfbσ σ̄ (iωn) = 〈〈 f̂ σ b̂†b̂, f̂ σ̄ 〉〉ω, Qgσ (iωn) = 〈〈 f̂ σ b̂†, f̂ †
σ 〉〉ω and

Qgσ σ̄ (iωn) = 〈〈 f̂ σ b̂†, f̂ σ̄ 〉〉ω.
To obtain the self-energy we need to derive one more equation. For this purpose, we again

use the equation of motion (A.1) and take Â = f̂ †
σ and B̂ = f̂ †

σ̄ . Based on equation (A.4), we
obtain

(iωn − µ f σ )〈〈 f̂ †
σ , f̂ †

σ̄ 〉〉ω + Uf〈〈 f̂ †
σ f̂ †

σ̄ f̂ σ̄ , f̂ †
σ̄ 〉〉ω + Ufb〈〈 f̂ †

σ b̂†b̂, f̂ †
σ̄ 〉〉ω − σg〈〈 f̂ σ̄ b̂†, f̂ †

σ̄ 〉〉ω

+
∑

k

Vkσ 〈〈ĉ†
kσ , f̂ †

σ̄ 〉〉ω = 0 . (A.14)

We now replace 〈〈ĉ†
kσ , f̂ †

σ̄ 〉〉ω using equation (A.10) and obtain:

−σ(iωn − µ f σ + 1∗

σ (iωn))F∗(σ iωn) + σ1SC(−σ iωn)G σ̄ (iωn) − Uf Q
∗

ff,σ σ̄ (iωn)

−Ufb Q∗

fbσ σ̄ (iωn) − σgQgσ̄ (iωn) = 0. (A.15)

We proceed to write our results in matrix form. For σ = 1, we use equation (A.11) and the
complex conjugate of equation (A.15), whereas for σ = −1, we take equation (A.15) and the
complex conjugate of equation (A.11):

(iωn + µ f ↑ − 1↑(iωn))G↑(iωn) − 1SC(iωn)F∗(−iωn) − Uf Qff↑(iωn)

−Ufb Qfb↑(iωn) − gQ∗

g↓↑
(iωn) = 1,

−
(
iωn − µ f ↓ + 1↓(−iωn)

)
G∗

↓
(iωn) − 1SC(iωn)F(iωn) − Uf Q

∗

ff↓(iωn)

−Ufb Q∗

fb↓
(iωn) + gQg↑↓(iωn) = 1,(

iωn + µ f ↑ − 1↑(iωn)
)

F(iωn) + 1SC(iωn)G
∗

↓
(iωn) − Uf Qff,↑↓(iωn)

−Ufb Qfb↑↓(iωn) − gQ∗

g↓
(iωn) = 0,
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(iωn − µ f ↓ + 1↓(iωn))F∗(iωn) − 1SC(iωn)G↑(iωn) − Uf Q
∗

ff,↓↑
(iωn)

−Ufb Q∗

fb↓↑
(iωn) + gQg↑(iωn) = 0.

The last four equations can be rewritten in matrix form as follows:(
1 0

0 1

)
=

(
iωn + µf↑ − 1↑(iωn) −1SC(iωn)

−1SC(iωn) iωn − µf↓ + 1↓(−iωn)

)(
G↑(iωn) F(iωn)

F∗(−iωn) −G∗

↓
(iωn)

)

−

(
Uf Qff↑(iωn) + Ufb Qfb↑(iωn) + gQ∗

g↓↑
(iωn) Uf Qff,↑↓(iωn) + Ufb Qfb↑↓(iωn) + gQ∗

g↓
(iωn)

Uf Q∗

ff,↓↑
(iωn) + Ufb Q∗

fb↓↑
(iωn) − gQg↑(iωn) Uf Q∗

ff↓(iωn) + Ufb Q∗

fb↓
(iωn) − gQg↑↓(iωn)

)
.

(A.16)

Now we compare equation (A.16) with the Dyson equation, which has the matrix form:

Ĝ−1(iωn) − 6̂(iωn) = Ĝ−1(iωn) , (A.17)

where

Ĝ(iω) =

(
G↑(iωn) F(iωn)

F∗(−iωn) −G∗

↓
(iωn)

)
(A.18)

is the matrix interacting Green’s function,

Ĝ(iω) =

(
iωn + µf↑ − 1↑(iωn) −1SC(iωn)

−1SC(iωn) iωn − µf↓ + 1↓(−iωn)

)−1

(A.19)

is the matrix Weiss Green’s function and 6̂(ω) is the matrix self-energy. From this comparison
it follows directly that(

6↑(iωn) 6SC(iωn)

6∗

SC(iωn) −6∗

↓
(iωn)

)

=

(
Uf Qff↑(iωn) + Ufb Qfb↑(iωn) + gQ∗

g↓↑
(iωn) Uf Qff,↑↓(iωn) + Ufb Qfb↑↓(iωn) + gQ∗

g↓
(iωn)

Uf Q∗

ff,↓↑
(iωn) + Ufb Q∗

fb↓↑
(iωn) − gQg↑(iωn) Uf Q∗

ff↓(iωn) + Ufb Q∗

fb↓
(iωn) − gQg↑↓(iωn)

)

×

(
G↑(iωn) F(iωn)

F∗(−iωn) −G∗

↓
(iωn)

)−1

. (A.20)

From here we obtain the final result:

6σ (iωn) =
(Uf Qffσ (iωn) + Ufb Qfbσ (iωn) + σgQ∗

gσ̄ σ (iωn))G∗

σ̄ (iωn)

Gσ (iωn)G∗

σ̄ (iωn) + F(σ iωn)F∗(σ̄ iωn)

+
(σUf Qff,σ σ̄ (iωn) + σUfb Qfbσ σ̄ (iωn) + gQ∗

gσ̄ (iωn))F∗(σ̄ iωn)

Gσ (iωn)G∗

σ̄ (iωn) + F(σ iωn)F∗(σ̄ iωn)
, (A.21)

6SC(iωn) =
(Uf Qff↑(iωn) + Ufb Qfb↑(iωn) + gQ∗

g↓↑
(iωn))F(iωn)

G↑(iωn)G∗

↓
(iωn) + F(iωn)F∗(−iωn)

−
(Uf Qff,↑↓(iωn) + Ufb Qfb↑↓(iωn) + gQ∗

g↓
(iωn))G↑(iωn)

G↑(iωn)G∗

↓
(iωn) + F(iωn)F∗(−iωn)

. (A.22)
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