6,574 research outputs found

    Stratospheric feedback from continued increases in tropospheric methane

    Get PDF
    Tropospheric concentrations of methane have increased steadily over the past ten years at an average rate of 16.5 ppbv per year, to a value in January 1988 of 1.69 ppmv. Measurements of CH sub 4 concentrations in air bubbles trapped in ice cores have shown concentrations of about 0.7 ppmv 200 years ago, with little further change for thousands of years before that. Interpolation earlier into this century suggests a concentration of about 1.1 to 1.2 ppmv in the 1940's. The only important pathway believed to be important for transfer of air from the troposphere to the stratosphere in through the tropical tropopause which is cold enough to reduce the mixing ratio of H sub 2 O in that air to about 3 ppmv. The only other major pathway for the delivery of H to the stratosphere is through the simultaneous injection of gaseous CH sub 4 in the same rising air. The formation of clouds in the stratosphere is dependent upon very low temperatures, and generally upon the amount of water vapor available. The possibility of a positive feedback exists, especially in well-oxidized methane air, that clouds are easier to form than earlier. This could mean enhancement of PSCs in both Antarctic and Arctic locations. Additional H sub 2 O in the stratosphere can also add to some of the greenhouse calculations

    Measurement of atmospheric HO by a chemical method

    Get PDF
    The parameters for a chemical technique can be outlined from the following set of desirable goals: (1) sufficient conversion of tracer species A to product B that B can be measured quantitatively in the presence of A and a great excess of air; (2) specificity of reaction such that A is converted to B only by reaction with HO; and (3) sufficient sensitivity for detection that the ambient concentration of HO is not seriously perturbed by the presence of A and B. This proposed study involves finding a chemical reaction specific enough for OH, and a measurement of the product formed. What one wants is a rate constant of about 10 to the -10th power cu cm/s, so that 0.1 percent of the OH will be converted in 100 s. Laboratory studies are needed to find a reaction which will fill this bill, yielding a product in quantity sufficient for precise measurement. This is an extremely fast constant and the search may be difficult. Again there is a question of perturbing the local environment, while still providing a sensitive measurement. Also the temperature and pressure dependence of the reaction rate is a complicated function for many of these species (that is, one must use a RRKM or Troe-based picture), and must be taken into account

    Analogy of the slow dynamics between the supercooled liquid and the supercooled plastic crystal states of difluorotetrachloroethane

    Full text link
    Slow dynamics of difluorotetrachloroethane in both supercooled plastic crystal and supercooled liquid states have been investigated from Molecular Dynamics simulations. The temperature and wave-vector dependence of collective dynamics in both states are probed using coherent dynamical scattering functions S(Q,t)S(Q,t). Our results confirm the strong analogy between molecular liquids and plastic crystals for which α\alpha-relaxation times and non-ergodicity parameters are controlled by the non trivial static correlations S(Q)S(Q) as predicted by the Mode Coupling Theory. The use of infinitely thin needles distributed on a lattice as model of plastic crystals is discussed

    Onset of slow dynamics in difluorotetrachloroethane glassy crystal

    Full text link
    Complementary Neutron Spin Echo and X-ray experiments and Molecular Dynamics simulations have been performed on difluorotetrachloroethane (CFCl2-CFCl2) glassy crystal. Static, single-molecule reorientational dynamics and collective dynamics properties are investigated. The orientational disorder is characterized at different temperatures and a change in nature of rotational dynamics is observed. We show that dynamics can be described by some scaling predictions of the Mode Coupling Theory (MCT) and a critical temperature TcT_{c} is determined. Our results also confirm the strong analogy between molecular liquids and plastic crystals for which α\alpha-relaxation times and non-ergodicity parameters are controlled by the non trivial static correlations as predicted by MCT

    Electronic Selection Rules Controlling Dislocation Glide in bcc Metals

    Full text link
    The validity of the structure-property relationships governing the deformation behavior of bcc metals was brought into question with recent {\it ab initio} density functional studies of isolated screw dislocations in Mo and Ta. These existing relationships were semiclassical in nature, having grown from atomistic investigations of the deformation properties of the groups V and VI transition metals. We find that the correct form for these structure-property relationships is fully quantum mechanical, involving the coupling of electronic states with the strain field at the core of long a/2a/2 screw dislocations.Comment: 4 pages, 2 figure

    Measurement of the ΔS=-ΔQ Amplitude from K_(e3)^0 Decay

    Get PDF
    We have measured the time distribution of the π^+e^-ν and π^-e^+ν modes from initial K^0's in a spark-chamber experiment performed at the Bevatron. From 1079 events between 0.2 and 7 K_S^0 lifetime, we find ReX=-0.069±0.036, ImX=+0.108_(-0.074)^(+0.092). This result is consistent with X=0 (relative probability = 0.25), but more than 4 standard deviations from the existing world average, +0.14 -0.13i

    Manifestation of classical wave delays in a fully quantized model of the scattering of a single photon

    Get PDF
    We consider a fully quantized model of spontaneous emission, scattering, and absorption, and study propagation of a single photon from an emitting atom to a detector atom both with and without an intervening scatterer. We find an exact quantum analog to the classical complex analytic signal of an electromagnetic wave scattered by a medium of charged oscillators. This quantum signal exhibits classical phase delays. We define a time of detection which, in the appropriate limits, exactly matches the predictions of a classically defined delay for light propagating through a medium of charged oscillators. The fully quantized model provides a simple, unambiguous, and causal interpretation of delays that seemingly imply speeds greater than c in the region of anomalous dispersion.Comment: 18 pages, 4 figures, revised for clarity, typos corrrecte
    • …
    corecore