CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan
Authors
Barbara Barletta
Donald R Blake
+4 more
Simone Meinardi
F Sherwood Rowland
Isobel J Simpson
Shichun Zou
Publication date
1 June 2008
Publisher
eScholarship, University of California
Abstract
The Pearl River Delta (PRD) region can be considered one of the most economically developed areas of mainland China. In September 2005, a total of 96 whole air samples were collected in Guangzhou and Dongguan, two important urban centers of the PRD region. Guangzhou is considered the economic center of Guangdong province, and Dongguan is a rapidly expanding industrial city. Here, we report mixing ratios of 50 nonmethane hydrocarbons (NMHCs) that were quantified in the ambient air of these PRD centers. The discussion focuses on understanding the main sources responsible for NMHC emissions, and evaluating the role of the identified sources towards ozone formation. Propane was the most abundant species in Guangzhou, with an average mixing ratio of 6.8 ppbv (±0.7 ppbv S.E.), compared to 2.5±0.2 ppbv in Dongguan. Toluene was the most abundant hydrocarbon in Dongguan (6.1±0.8 ppbv, compared to 5.9±0.7 ppbv in Guangzhou). Based on an analysis of the correlation between vehicular-emitted compounds and the measured NMHCs, together with the benzene-to-toluene (B/T) ratio, vehicular emission appears to be the dominant source of NMHCs measured in Guangzhou. By contrast, selected species (including toluene) in many of the Dongguan samples were influenced by an additional source, most likely related to industrial activities. A specific B/T ratio (<0.20) is proposed here and used as indicator of samples strongly affected by industrial emissions. The ozone formation potential (OFP) is calculated, and the role of the different NMHCs associated with industrial and combustion sources is evaluated. © 2008 Elsevier Ltd. All rights reserved
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021