55 research outputs found

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    Coupling Supported Lipid Bilayer Electrophoresis with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging

    No full text
    Herein, we describe a new analytical platform utilizing advances in heterogeneous supported lipid bilayer (SLB) electrophoresis and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) imaging. This platform allowed for the separation and visualization of both charged and neutral lipid membrane components without the need for extrinsic labels. A heterogeneous SLB was created using vesicles containing monosialoganglioside GM1, disialoganglioside GD1b, POPC, as well as the ortho and para isomers of Texas Red-DHPE. These components were then separated electrophoretically into five resolved bands. This represents the most complex separation by SLB electrophoresis performed to date. The SLB samples were flash frozen in liquid ethane and dried under vacuum before imaging with MALDI-MS. Fluorescence microscopy was employed to confirm the position of the Texas Red labeled lipids, which agreed well with the MALDI-MS imaging results. These results clearly demonstrate this platform’s ability to isolate and identify nonlabeled membrane components within an SLB

    Net Global Warming Potential and Greenhouse Gas Intensity in Irrigated Cropping Systems in Northeastern Colorado

    Get PDF
    The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn–soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kgN ha-1. Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer
    • …
    corecore