9,589 research outputs found
A theoretical analysis of airplane longitudinal stability and control as affected by wind shear
The longitudinal equations of motion with wind shear terms were used to analyze the stability and motions of a jet transport. A positive wind shear gives a decreasing head wind or changes a head wind into a tail wind. A negative wind shear gives a decreasing tail wind or changes a tail wind into a head wind. It was found that wind shear had very little effect on the short period mode and that negative wind shear, although it affected the phugoid, did not cause stability problems. On the other hand, it was found that positive wind shear can cause the phugoid to become aperiodic and unstable. In this case, a stability boundary for the phugoid was found that is valid for most aircraft at all flight speeds. Calculations of aircraft motions confirmed the results of the stability analysis. It was found that a flight path control automatic pilot and an airspeed control system provide good control in all types of wind shear. Appendixes give equations of motion that include the effects of downdrafts and updrafts and extend the longitudinal equations of motion for shear to six degrees of freedom
Theoretical study of the effect of wind velocity gradients on longitudinal stability and control in climbing and level flight
A change in the wind vector over a short distance along the flight path (wind gradient) has caused several severe airplane accidents during take-off and landing. Results of a previous study showed that, in descending flight, a positive wind gradient (decreasing head wind) caused severe divergent motion and a negative wind gradient (decreasing tail wind) caused oscillatory motion which should not create a control problem. The results obtained when the same method of analysis was applied to climbing and to straight and level flight are reported. In straight and level flight, a wind gradient was found to cause effects similar to those found in descending flight. In climbing flight, it was found that a negative wind gradient caused a slightly divergent oscillation that presented no control problems and a positive wind gradient caused oscillatory divergence. Results of motion studies indicated that adequate control of the airplane motions can be provided by automatic control systems
Preliminary study of a possible automatic landing system
Navigation and control laws for a possible automatic landing system have been investigated. The system makes use of data from an inertial table and either an airborne or ground radar to generate signals that guide the airplane to a landing. All landing maneuvers take place within a zone that extends 6000 m out from the touchdown point, 4000 m on each side of the runway center line, and 540 m high. The results show that the system can adequately control the airplane on steep, curved decelerating approaches to a landing that takes place with small errors from the desired landing point and desired airplane attitude. The system studied would interface well with the scanning beam microwave landing system (MLS). The use of this system with the MLS makes it possible to incorporate an independent landing monitor
Relativistic models of the universe with pressure equal to zero and time-dependent uniformity
Zero density and approximate, relativistic models of univers
Generalization and refinement of an automatic landing system capable of curved trajectories
Refinements in the lateral and longitudinal guidance for an automatic landing system capable of curved trajectories were studied. Wing flaps or drag flaps (speed brakes) were found to provide faster and more precise speed control than autothrottles. In the case of the lateral control it is shown that the use of the integral of the roll error in the roll command over the first 30 to 40 seconds of flight reduces the sensitivity of the lateral guidance to the gain on the azimuth guidance angle error in the roll command. Also, changes to the guidance algorithm are given that permit pi-radian approaches and constrain the airplane to fly in a specified plane defined by the position of the airplane at the start of letdown and the flare point
Airplane stability calculations with a card programmable pocket calculator
Programs are presented for calculating airplane stability characteristics with a card programmable pocket calculator. These calculations include eigenvalues of the characteristic equations of lateral and longitudinal motion as well as stability parameters such as the time to damp to one-half amplitude or the damping ratio. The effects of wind shear are included. Background information and the equations programmed are given. The programs are written for the International System of Units, the dimensional form of the stability derivatives, and stability axes. In addition to programs for stability calculations, an unusual and short program is included for the Euler transformation of coordinates used in airplane motions. The programs have been written for a Hewlett Packard HP-67 calculator. However, the use of this calculator does not constitute an endorsement of the product by the National Aeronautics and Space Administration
Methods of measuring electric fields
"Reprinted from Supplement to IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-2, No. 6 November 1966.""To determine the potential of a spacecraft, an electric field meter is needed to measure the field at the surface and in the neighborhood of the craft. A search was made for field measuring methods which would not involve rapidly moving parts. Several of these methods are discussed along with some experimental work performed to determine their feasibility. The use of the Stark effect in the rotational spectra of gases appears to be the most promising method considered and it is discussed in more detail."--Abstract
Twelve experiments in restorative justice: the Jerry Lee program of randomized trials of restorative justice conferences
Objectives: We conducted and measured outcomes from the Jerry Lee Program of 12 randomized trials over two decades in Australia and the United Kingdom (UK), testing an identical method of restorative justice taught by the same trainers to hundreds of police officers and others who delivered it to 2231 offenders and 1179 victims in 1995–2004. The article provides a review of the scientific progress and policy effects of the program, as described in 75 publications and papers arising from it, including previously unpublished results of our ongoing analyses. Methods: After random assignment in four Australian tests diverting criminal or juvenile cases from prosecution to restorative justice conferences (RJCs), and eight UK tests of supplementing criminal or juvenile proceedings with RJCs, we followed intention-to-treat group differences between offenders for up to 18 years, and for victims up to 10 years. Results: We distil and modify prior research reports into 18 updated evidence-based conclusions about the effects of RJCs on both victims and offenders. Initial reductions in repeat offending among offenders assigned to RJCs (compared to controls) were found in 10 of our 12 tests. Nine of the ten successes were for crimes with personal victims who participated in the RJCs, with clear benefits in both short- and long-term measures, including less prevalence of post-traumatic stress symptoms. Moderator effects across and within experiments showed that RJCs work best for the most frequent and serious offenders for repeat offending outcomes, with other clear moderator effects for poly-drug use and offense seriousness. Conclusions: RJ conferences organized and led (most often) by specially-trained police produced substantial short-term, and some long-term, benefits for both crime victims and their offenders, across a range of offense types and stages of the criminal justice processes on two continents, but with important moderator effects. These conclusions are made possible by testing a new kind of justice on a programmatic basis that would allow prospective meta-analysis, rather than doing one experiment at a time. This finding provides evidence that funding agencies could get far more evidence for the same cost from programs of identical, but multiple, RCTs of the identical innovative methods, rather than funding one RCT at a time
- …